Approximation Algorithms with Predictions

Antonios Antoniadis University of Twente

Marek Eliáš

Adam Polak

Moritz Venzin

Bocconi University

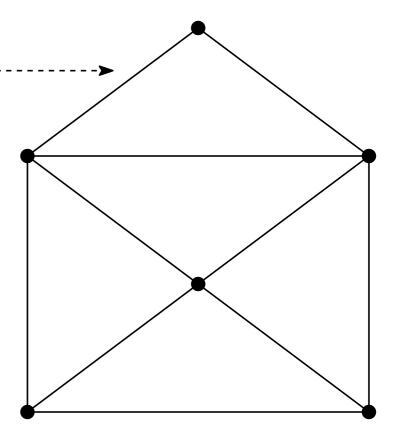
Approximation algorithms

$$value(ALG) \leq \rho \cdot value(OPT)$$

approximation ratio (approximation factor)

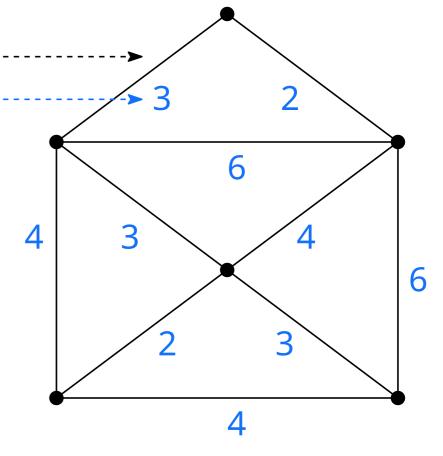
Input:

▶ undirected **graph** G = (V, E)



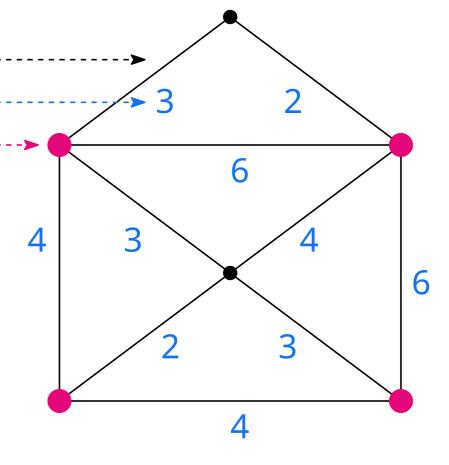
Input:

- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geqslant 0}$



Input:

- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geq 0}$
- ▶ set of **terminals** $T \subseteq V$

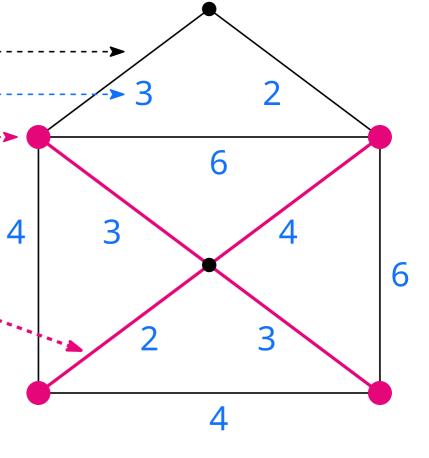


Input:

- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w: E \to \mathbb{R}_{\geqslant 0}$
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T



Input:

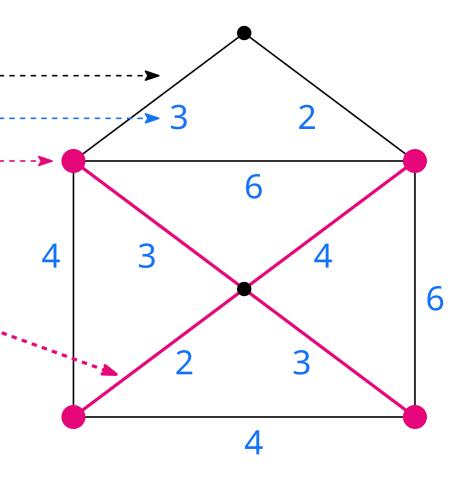
- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w: E \to \mathbb{R}_{\geqslant 0}$
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T

What is known?

► NP-hard [Karp '72]



Input:

- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geqslant 0}$ -----
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T

What is known?

- ► NP-hard
 [Karp '72]
- ▶ **2**-approximation in (near-)**linear** $O(E + V \log V)$ time

[Takahashi, Matsuyama '80], [Kou, Markowsky, Berman '81], [Wu, Widmayer, Wong '86], [Widmayer '86], [Mehlhorn '88]

Input:

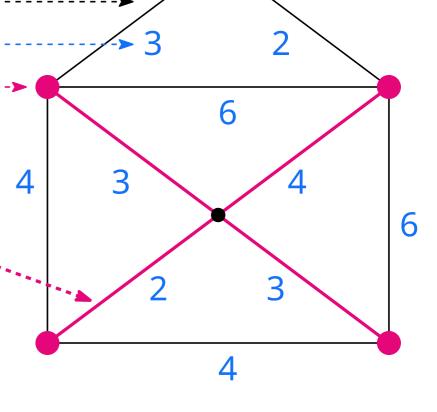
- ▶ undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geqslant 0}$
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T

What is known?

NP-hard [Karp '72] $w(\mathsf{ALG}(I)) \leqslant \mathbf{2} \cdot w(\mathsf{OPT}(I))$ for every instance I



▶ **2**-approximation in (near-)**linear** $O(E + V \log V)$ time

[Takahashi, Matsuyama '80], [Kou, Markowsky, Berman '81], [Wu, Widmayer, Wong '86], [Widmayer '86], [Mehlhorn '88]

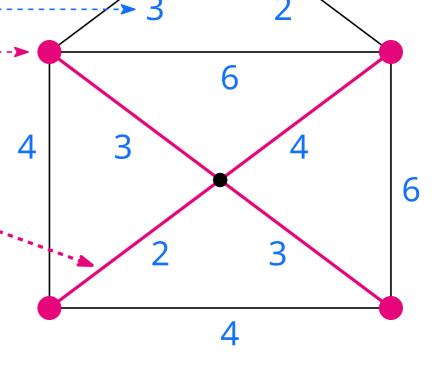
Input:

- undirected **graph** G = (V, E)
- ▶ edge **weights** $w : E \to \mathbb{R}_{\geqslant 0}$ -
- ▶ set of **terminals** $T \subseteq V$

Output:

min weight subgraph of G spanning T

 $w(\mathsf{ALG}(I)) \leq \mathbf{2} \cdot w(\mathsf{OPT}(I))$ for every instance I



What is known?

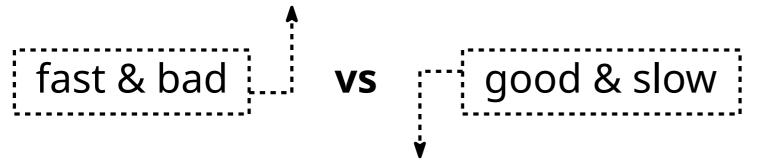
NP-hard [Karp '72]

2-approximation in (near-)**linear** $O(E + V \log V)$ time

[Takahashi, Matsuyama '80], [Kou, Markowsky, Berman '81], [Wu, Widmayer, Wong '86], [Widmayer '86], [Mehlhorn '88]

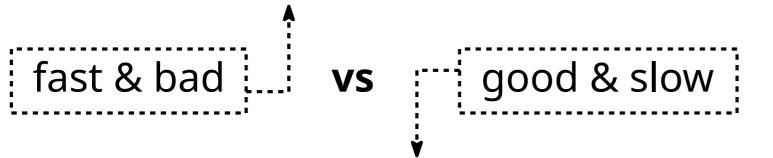
► 1.39-approximation in unspecified polynomial V^O(1) time
[Zelikovsky '93], [Prömel, Steger '97], [Karpiński, Zelikovsky '97], [Hougardy, Prömel '99], [Robins, Zelikovsky '00], [Byrka, Grandoni, Rothvoss, Sanità '10]

▶ 2-approximation in (near-)linear $O(E + V \log V)$ time



▶ 1.39-approximation in unspecified polynomial $V^{O(1)}$ time

▶ 2-approximation in (near-)linear $O(E + V \log V)$ time



▶ 1.39-approximation in unspecified polynomial $V^{O(1)}$ time

Could we have both **fast** and **good**?

▶ 2-approximation in (near-)linear $O(E + V \log V)$ time

fast & bad vs good & slow

▶ 1.39-approximation in unspecified polynomial $V^{O(1)}$ time

Could we have both **fast** and **good**?

Yes!*

*If we have accurate enough **predictions**

▶ 2-approximation in (near-)linear $O(E + V \log V)$ time

fast & bad vs good & slow

▶ 1.39-approximation in unspecified polynomial $V^{O(1)}$ time

Could we have both **fast** and **good**?

Yes!*

*If we have accurate enough **predictions**

Steiner Tree with predictions

Input:

- ▶ undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$
- ▶ set of terminals $T \subseteq V$

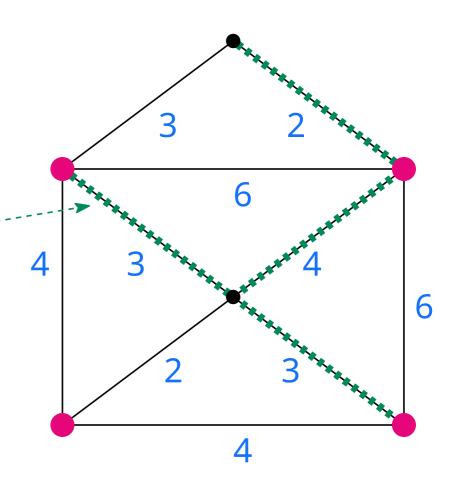
Prediction:

▶ a subset of edges $PRED \subseteq E$

(not necessarily feasible)

Output:

min weight subgraph of G spanning T



Steiner Tree with predictions

Input:

- ▶ undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$
- ▶ set of terminals $T \subseteq V$

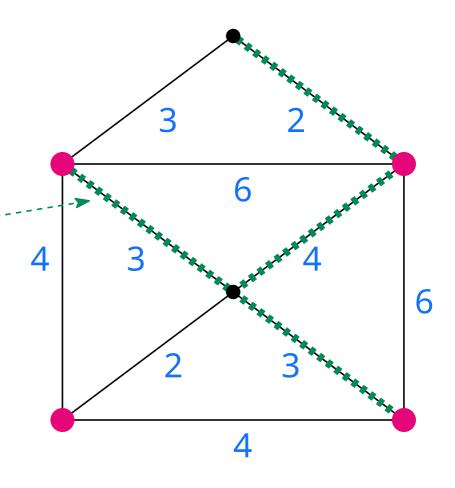
Prediction:

▶ a subset of edges $PRED \subseteq E$

(not necessarily feasible)

Output:

min weight subgraph of G spanning T



Our result:

 \blacktriangleright (1 + η /OPT)-approximation in (near-)linear $O(E + V \log V)$ time

prediction error $\eta := w(PRED \setminus OPT) + w(OPT \setminus PRED)$

Steiner Tree with predictions

Input:

- ▶ undirected graph G = (V, E)
- ▶ edge weights $w : E \to \mathbb{R}_{\geq 0}$
- ▶ set of terminals $T \subseteq V$

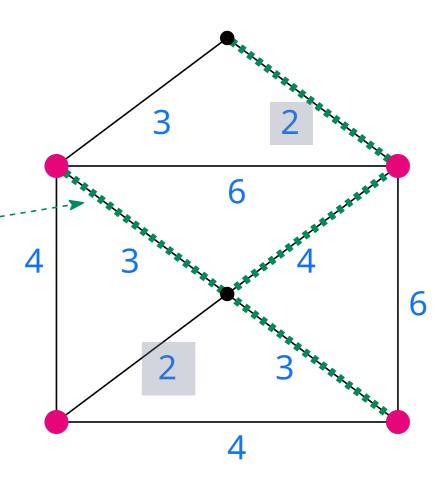
Prediction:

▶ a subset of edges $PRED \subseteq E$

(not necessarily feasible)

Output:

min weight subgraph of G spanning T

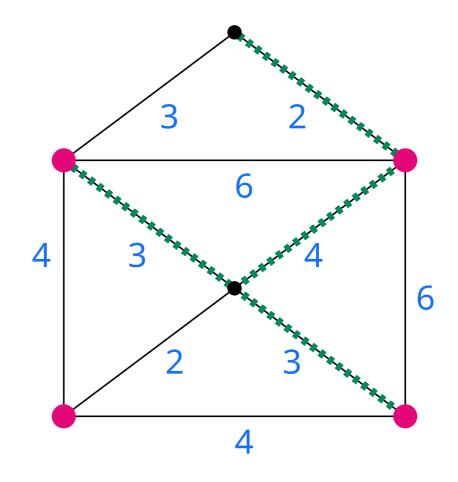


Our result:

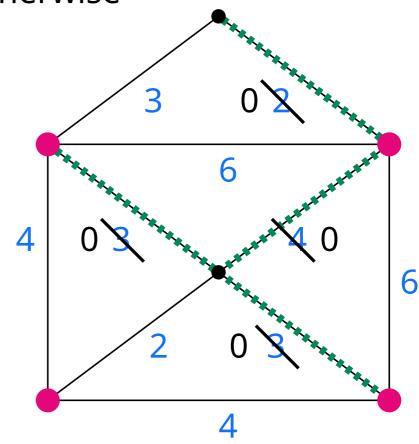
 \blacktriangleright (1 + η /OPT)-approximation in (near-)linear $O(E + V \log V)$ time

prediction error $\eta := w(PRED \setminus OPT) + w(OPT \setminus PRED)$

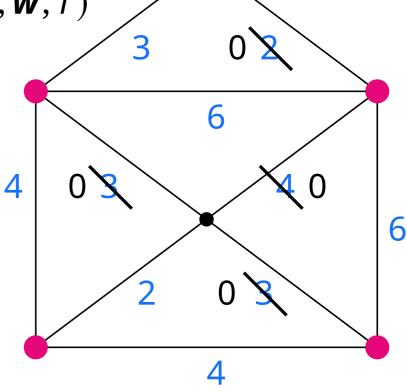
▶ read input G = (V, E), $W : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$



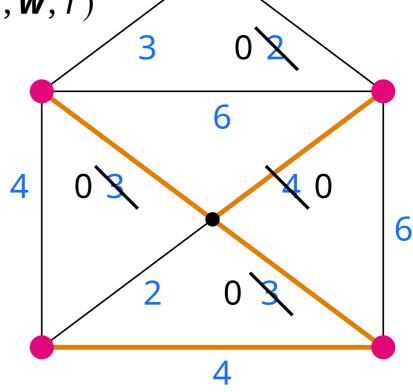
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{\boldsymbol{w}}(\boldsymbol{e}) = \begin{cases} \boldsymbol{0}, & \text{if } \boldsymbol{e} \in \mathsf{PRED} \\ w(\boldsymbol{e}), & \text{otherwise} \end{cases}$



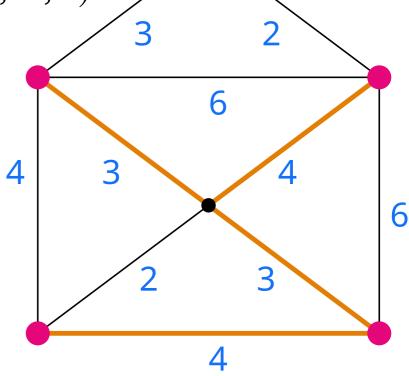
- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{\boldsymbol{w}}(\boldsymbol{e}) = \begin{cases} \boldsymbol{0}, & \text{if } \boldsymbol{e} \in \mathsf{PRED} \\ w(\boldsymbol{e}), & \text{otherwise} \end{cases}$
- run the (near-)linear time 2-approximation on (G, \overline{w}, T)



- ▶ read input G = (V, E), $w : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{w}(e) = \begin{cases} 0, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time 2-approximation on (G, \overline{w}, T)

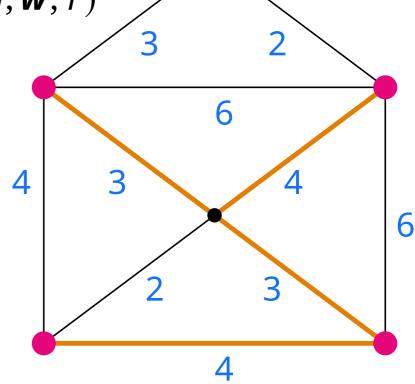


- ▶ read input G = (V, E), $\mathbf{w} : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{\boldsymbol{w}}(\boldsymbol{e}) = \begin{cases} \boldsymbol{0}, & \text{if } \boldsymbol{e} \in \mathsf{PRED} \\ w(\boldsymbol{e}), & \text{otherwise} \end{cases}$
- run the (near-)linear time 2-approximation on (G, \overline{w}, T)
- return what it returned



- ▶ read input G = (V, E), $w : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{w}(e) = \begin{cases} 0, & \text{if } e \in PRED \\ w(e), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

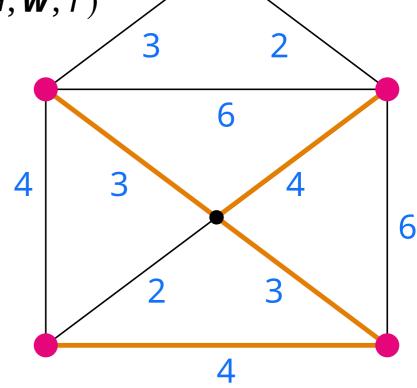
Claim: $w(ALG) \le (1 + \eta/OPT) \cdot OPT = OPT + \eta$



- ▶ read input G = (V, E), $w : E \to \mathbb{R}_{\geq 0}$, $T \subseteq V$ and prediction PRED $\subseteq E$
- reate new weight function $\bar{\boldsymbol{w}}(\boldsymbol{e}) = \begin{cases} \boldsymbol{0}, & \text{if } \boldsymbol{e} \in \mathsf{PRED} \\ w(\boldsymbol{e}), & \text{otherwise} \end{cases}$
- run the (near-)linear time **2-approximation** on (G, \overline{w}, T)
- return what it returned

Claim: $w(ALG) \le (1 + \eta/OPT) \cdot OPT = OPT + \eta$

Proof: via simple analysis of a Venn diagram



For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

if there is a T(n)-time approximation algorithm with approximation factor 2

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

if there is a T(n)-time approximation algorithm with approximation factor 2

then there is an O(T(n))-time learning-augmented approximation algorithm with approximation factor $1 + \frac{\eta}{OPT}$

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

if there is a T(n)-time approximation algorithm with approximation factor 2

then there is an O(T(n))-time **learning-augmented** approximation algorithm with **approximation factor** min $\{2, 1 + \frac{\eta}{OPT}\}$

For any **minimization problem** of the following form:

Input:

- ▶ *n* items with **weights**: $w_1, w_2, ..., w_n \in \mathbb{R}_{\geq 0}$
- ▶ implicitly given set of **feasible solutions**: $X \subseteq \{1, 2, ..., n\}$

Output:

▶ $\min\{w(X) \mid X \in X\}$

if there is a T(n)-time approximation algorithm with approximation factor ρ

then there is an O(T(n))-time learning-augmented approximation algorithm with approximation factor $\min\{\rho, 1 + \frac{\eta_+ + (\rho-1) \cdot \eta_-}{\rho}\}$ $= w(OPT \setminus PRED)$ $= \frac{\eta_+}{\rho} := w(PRED \setminus OPT)$

Applications

- (Minimum Weight) Steiner Tree
- (Minimum Weight) Vertex Cover
- Minimum Weight Perfect Matching in Metric Graphs
- ► (Maximum Weight) Clique (a similar general theorem for maximization problems)
- Knapsack
- ► [place for your favorite problem]

What else is in the paper?

- Lower bounds showing optimality of the general framework
- ► Refined algorithm with stronger guarantees for Steiner Tree
- Experimental evaluation

What else is in the paper?

- Lower bounds showing optimality of the general framework
- ► Refined algorithm with stronger guarantees for Steiner Tree
- Experimental evaluation

Thank you!