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Approximation algorithms

value(ALG) ⩽ 𝝆 · value(OPT)

approximation ratio (approximation factor)
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Steiner Tree with predictions
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Proof: via simple analysis of a Venn diagram
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For any minimization problem of the following form:

Input:
▶ 𝑛 items with weights: 𝑤1, 𝑤2, . . . , 𝑤𝑛 ∈ R⩾0
▶ implicitly given set of feasible solutions: X ⊆ {1, 2, . . . , 𝑛}

Output:
▶ min{𝒘(𝑋) | 𝑋 ∈ X}

if there is a 𝑻(𝒏)-time approximation algorithm with approximation factor 𝝆

then there is an 𝑶(𝑻(𝒏))-time learning-augmented approximation algorithm
with approximation factor min{𝜌, 1 +
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𝜼+ := 𝑤(PRED \ OPT)
𝜼− := 𝑤(OPT \ PRED)



Applications

▶ (Minimum Weight) Steiner Tree

▶ (Minimum Weight) Vertex Cover

▶ Minimum Weight Perfect Matching in Metric Graphs

▶ (Maximum Weight) Clique

▶ Knapsack

▶ [place for your favorite problem]

 (a similar general theorem for maximization problems)
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Thank you!


