
Approximation Algorithms
with Predictions

Antonios Antoniadis

Marek Eliáš

Adam Polak

Moritz Venzin

 Bocconi University

University of Twente



Approximation algorithms

value(ALG) ⩽ 𝝆 · value(OPT)

approximation ratio (approximation factor)



Example: the Steiner Tree problem
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)



Example: the Steiner Tree problem
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0

3 4

2 3

6

4

4
6

3 2



Example: the Steiner Tree problem
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

3 4

2 3

6

4

4
6

3 2



Example: the Steiner Tree problem
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

Output:
▶ min weight subgraph of 𝐺 spanning 𝑇

3 4

2 3

6

4

4
6

3 2



Example: the Steiner Tree problem
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

Output:
▶ min weight subgraph of 𝐺 spanning 𝑇

3 4

2 3

6

4

4
6

3 2

[Karp ’72]
▶ NP-hard

What is known?



Example: the Steiner Tree problem
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

Output:
▶ min weight subgraph of 𝐺 spanning 𝑇

3 4

2 3

6

4

4
6

3 2

[Karp ’72]

[Takahashi, Matsuyama ’80], [Kou, Markowsky, Berman ’81], [Wu, Widmayer, Wong ’86], [Widmayer ’86], [Mehlhorn ’88]

▶ NP-hard

▶ 2-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

What is known?



Example: the Steiner Tree problem
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

Output:
▶ min weight subgraph of 𝐺 spanning 𝑇

3 4

2 3

6

4

4
6

3 2

[Karp ’72]

[Takahashi, Matsuyama ’80], [Kou, Markowsky, Berman ’81], [Wu, Widmayer, Wong ’86], [Widmayer ’86], [Mehlhorn ’88]

▶ NP-hard

▶ 2-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

What is known?
𝑤(ALG(𝐼)) ⩽ 2 · 𝑤(OPT(𝐼))

for every instance 𝐼



Example: the Steiner Tree problem
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

Output:
▶ min weight subgraph of 𝐺 spanning 𝑇

3 4

2 3

6

4

4
6

3 2

[Karp ’72]

[Takahashi, Matsuyama ’80], [Kou, Markowsky, Berman ’81], [Wu, Widmayer, Wong ’86], [Widmayer ’86], [Mehlhorn ’88]

▶ NP-hard

▶ 2-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

What is known?
𝑤(ALG(𝐼)) ⩽ 2 · 𝑤(OPT(𝐼))

for every instance 𝐼

▶ 1.39-approximation in unspecified polynomial 𝑽𝑶(1) time
[Zelikovsky ’93], [Prömel, Steger ’97], [Karpiński, Zelikovsky ’97], [Hougardy, Prömel ’99], [Robins, Zelikovsky ’00], [Byrka, Grandoni, Rothvoss, Sanità ’10]



The dilemma
▶ 2-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

▶ 1.39-approximation in unspecified polynomial𝑉𝑂(1) time

good & slowfast & bad vs



The dilemma
▶ 2-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

▶ 1.39-approximation in unspecified polynomial𝑉𝑂(1) time

good & slowfast & bad vs

Could we have both fast and good?



The dilemma
▶ 2-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

▶ 1.39-approximation in unspecified polynomial𝑉𝑂(1) time

good & slowfast & bad vs

Could we have both fast and good?

Yes!*
*If we have accurate enough predictions



The dilemma
▶ 2-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

▶ 1.39-approximation in unspecified polynomial𝑉𝑂(1) time

good & slowfast & bad vs

Could we have both fast and good?

Yes!*
*If we have accurate enough predictions



Steiner Tree with predictions
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

Prediction:
▶ a subset of edges PRED ⊆ 𝐸

Output:
▶ min weight subgraph of 𝐺 spanning 𝑇

3 4

2 3

6

4

4
6

3 2

(not necessarily feasible)



Steiner Tree with predictions
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

Prediction:
▶ a subset of edges PRED ⊆ 𝐸

Output:
▶ min weight subgraph of 𝐺 spanning 𝑇

Our result:
▶ (1 + 𝜼/OPT)-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

prediction error 𝜼 := 𝑤(PRED \ OPT) + 𝑤(OPT \ PRED)

3 4

2 3

6

4

4
6

3 2

(not necessarily feasible)



Steiner Tree with predictions
Input:
▶ undirected graph 𝐺 = (𝑉, 𝐸)
▶ edge weights 𝑤 : 𝐸 → R⩾0
▶ set of terminals 𝑇 ⊆ 𝑉

Prediction:
▶ a subset of edges PRED ⊆ 𝐸

Output:
▶ min weight subgraph of 𝐺 spanning 𝑇

Our result:
▶ (1 + 𝜼/OPT)-approximation in (near-)linear 𝑂(𝐸 + 𝑉 log𝑉) time

prediction error 𝜼 := 𝑤(PRED \ OPT) + 𝑤(OPT \ PRED)

3 4

2 3

6

4

4
6

3 2

(not necessarily feasible)



Our learning-augmented algorithm for Steiner Tree
▶ read input 𝑮 = (𝑉, 𝐸), 𝒘 : 𝐸 → R⩾0, 𝑻 ⊆ 𝑉 and prediction PRED ⊆ 𝐸

3 4

2 3

6

4

4
6

3 2



Our learning-augmented algorithm for Steiner Tree
▶ read input 𝑮 = (𝑉, 𝐸), 𝒘 : 𝐸 → R⩾0, 𝑻 ⊆ 𝑉 and prediction PRED ⊆ 𝐸

▶ create new weight function 𝒘̄(𝒆) =

{
0, if 𝒆 ∈ PRED
𝑤(𝑒), otherwise

3 4

2 3

6

4

4
6

3 2

0

0

0

0



Our learning-augmented algorithm for Steiner Tree
▶ read input 𝑮 = (𝑉, 𝐸), 𝒘 : 𝐸 → R⩾0, 𝑻 ⊆ 𝑉 and prediction PRED ⊆ 𝐸

▶ create new weight function 𝒘̄(𝒆) =

{
0, if 𝒆 ∈ PRED
𝑤(𝑒), otherwise

▶ run the (near-)linear time 2-approximation on (𝐺, 𝒘̄, 𝑇)

3 4

2 3

6

4

4
6

3 2

0

0

0

0



Our learning-augmented algorithm for Steiner Tree
▶ read input 𝑮 = (𝑉, 𝐸), 𝒘 : 𝐸 → R⩾0, 𝑻 ⊆ 𝑉 and prediction PRED ⊆ 𝐸

▶ create new weight function 𝒘̄(𝒆) =

{
0, if 𝒆 ∈ PRED
𝑤(𝑒), otherwise

▶ run the (near-)linear time 2-approximation on (𝐺, 𝒘̄, 𝑇)

3 4

2 3

6

4

4
6

3 2

0

0

0

0



Our learning-augmented algorithm for Steiner Tree
▶ read input 𝑮 = (𝑉, 𝐸), 𝒘 : 𝐸 → R⩾0, 𝑻 ⊆ 𝑉 and prediction PRED ⊆ 𝐸

▶ create new weight function 𝒘̄(𝒆) =

{
0, if 𝒆 ∈ PRED
𝑤(𝑒), otherwise

▶ run the (near-)linear time 2-approximation on (𝐺, 𝒘̄, 𝑇)

▶ return what it returned

3 4

2 3

6

4

4
6

3 2



Our learning-augmented algorithm for Steiner Tree
▶ read input 𝑮 = (𝑉, 𝐸), 𝒘 : 𝐸 → R⩾0, 𝑻 ⊆ 𝑉 and prediction PRED ⊆ 𝐸

▶ create new weight function 𝒘̄(𝒆) =

{
0, if 𝒆 ∈ PRED
𝑤(𝑒), otherwise

▶ run the (near-)linear time 2-approximation on (𝐺, 𝒘̄, 𝑇)

▶ return what it returned

Claim: 𝑤(ALG) ⩽ (1 + 𝜂/OPT) · OPT = OPT + 𝜂

3 4

2 3

6

4

4
6

3 2



Our learning-augmented algorithm for Steiner Tree
▶ read input 𝑮 = (𝑉, 𝐸), 𝒘 : 𝐸 → R⩾0, 𝑻 ⊆ 𝑉 and prediction PRED ⊆ 𝐸

▶ create new weight function 𝒘̄(𝒆) =

{
0, if 𝒆 ∈ PRED
𝑤(𝑒), otherwise

▶ run the (near-)linear time 2-approximation on (𝐺, 𝒘̄, 𝑇)

▶ return what it returned

Claim: 𝑤(ALG) ⩽ (1 + 𝜂/OPT) · OPT = OPT + 𝜂

3 4

2 3

6

4

4
6

3 2

Proof: via simple analysis of a Venn diagram



Generalization
For any minimization problem of the following form:

Input:
▶ 𝑛 items with weights: 𝑤1, 𝑤2, . . . , 𝑤𝑛 ∈ R⩾0
▶ implicitly given set of feasible solutions: X ⊆ {1, 2, . . . , 𝑛}

Output:
▶ min{𝒘(𝑋) | 𝑋 ∈ X}



Generalization
For any minimization problem of the following form:

Input:
▶ 𝑛 items with weights: 𝑤1, 𝑤2, . . . , 𝑤𝑛 ∈ R⩾0
▶ implicitly given set of feasible solutions: X ⊆ {1, 2, . . . , 𝑛}

Output:
▶ min{𝒘(𝑋) | 𝑋 ∈ X}

if there is a 𝑻(𝒏)-time approximation algorithm with approximation factor 2



Generalization
For any minimization problem of the following form:

Input:
▶ 𝑛 items with weights: 𝑤1, 𝑤2, . . . , 𝑤𝑛 ∈ R⩾0
▶ implicitly given set of feasible solutions: X ⊆ {1, 2, . . . , 𝑛}

Output:
▶ min{𝒘(𝑋) | 𝑋 ∈ X}

then there is an 𝑶(𝑻(𝒏))-time learning-augmented approximation algorithm
with approximation factor 1 +

𝜼
OPT

if there is a 𝑻(𝒏)-time approximation algorithm with approximation factor 2



Generalization
For any minimization problem of the following form:

Input:
▶ 𝑛 items with weights: 𝑤1, 𝑤2, . . . , 𝑤𝑛 ∈ R⩾0
▶ implicitly given set of feasible solutions: X ⊆ {1, 2, . . . , 𝑛}

Output:
▶ min{𝒘(𝑋) | 𝑋 ∈ X}

if there is a 𝑻(𝒏)-time approximation algorithm with approximation factor 2

then there is an 𝑶(𝑻(𝒏))-time learning-augmented approximation algorithm
with approximation factor min{2, 1 +

𝜼
OPT }



Generalization
For any minimization problem of the following form:

Input:
▶ 𝑛 items with weights: 𝑤1, 𝑤2, . . . , 𝑤𝑛 ∈ R⩾0
▶ implicitly given set of feasible solutions: X ⊆ {1, 2, . . . , 𝑛}

Output:
▶ min{𝒘(𝑋) | 𝑋 ∈ X}

if there is a 𝑻(𝒏)-time approximation algorithm with approximation factor 𝝆

then there is an 𝑶(𝑻(𝒏))-time learning-augmented approximation algorithm
with approximation factor min{𝜌, 1 +

𝜼++(𝝆−1) ·𝜼−
OPT }

𝜼+ := 𝑤(PRED \ OPT)
𝜼− := 𝑤(OPT \ PRED)



Applications

▶ (Minimum Weight) Steiner Tree

▶ (Minimum Weight) Vertex Cover

▶ Minimum Weight Perfect Matching in Metric Graphs

▶ (Maximum Weight) Clique

▶ Knapsack

▶ [place for your favorite problem]

 (a similar general theorem for maximization problems)



What else is in the paper?

▶ Lower bounds showing optimality of the general framework

▶ Refined algorithm with stronger guarantees for Steiner Tree

▶ Experimental evaluation



What else is in the paper?

▶ Lower bounds showing optimality of the general framework

▶ Refined algorithm with stronger guarantees for Steiner Tree

▶ Experimental evaluation

Thank you!


