

The Bin Packing problem

Given *n* items $x_1, x_2, \ldots, x_n \in \mathbb{Q}_{\geq 0}$, and number ℓ of unit-sized bins,

decide if the items can be packed into the bins.

Bin packing is **NP-hard**, but...

... Bin Packing is easy when all items are large

 $\forall_i x_i > 1/3 \implies$ at most **two** items per bin

Matching in compatibility graph on items: edge $x \leftrightarrow j$ iff $x_i + x_j$

Bin Packing with Few Small Items

Bin Packing parameterized by the number of small items $k = \#\{i \mid x_i\}$ "distance to

Distance to triviality is a popular parameter in FPT literature, e.g.:

- Vertex Cover parameterized above matching
- Dominating Set parameterized by treewidth
- Longest Common Subsequence parameterized by maximum occurrent

BIN PACKING WITH FEW SMALL ITEMS VIA FAST EXACT MATCHING IN MULTIGRAPHS

Alexandra Lassota, Aleksander Łukasiewicz, Adam Polak

	Our main result
	Bin Packing with Few Small Items can l
	Two ingredients:
	 Reduction to Exact Weighted Perfect Matching Careful variant of Mulmuley–Vazirani–Vazirani exa
	Previous best: O *(k!4 ^k) [Bannach et al., 2020]
	What else is in the paper?
	• $O^*(2^k)$ time algorithms for
9	 Vector[†] Bin Packing with Few Small Items (Vector) Bin Covering with Few Small Items (Vector) Multiple Knapsack with Few Small Item Perfect Matching with Hitting Constraints
, ≤ 1	• Lower bound under SETH \diamond no $O^*(2^{(1-\varepsilon)n})$ time algorithm for Vector Bin Pack \diamond no $O^*(2^{(1-\varepsilon)k})$ time algorithm for Vector Bin Pack
	† items from $\mathbb{Q}^d_{\geq 0}$ require a more complex notion of la
	\ddagger for (one-dimensional) Bin Packing no c^n lower boussion Sum), and it is an important open problem to find of
atched edges	
< ¹ /3} triviality"	
nce number	This is not a Pfaf

be solved in $O^*(2^k)$ time.

act matching algorithm

ms

king[‡] king with Few Small Items

large items [Bannach et al., 2020]

und is known (similarly to Subset one

fian.

Bin Packing with Few Small Items \rightarrow Exact Matching

1. Add $2\ell - (n - k)$ dummy zero-sized "large" items \implies Exactly two large items in each bin

2. Create compatibility (multi-)graph on large (and dummy) items

for $i \in large$ items do for $j \in$ large items do for $S \in 2^{\text{small items}}$ do if $x_i + x_j + \sum_{s \in S} x_s \le 1$ then

3. Find perfect matching of total weight $k2^k + (2^k - 1)$

Lemma: $f(S_1) + f(S_2) + \dots + f(S_m) = k2^k + (2^k - 1)$ $\Leftrightarrow S_1, S_2, \dots, S_m$ is a partition of [k]

Exact Matching in multigraphs with large weights

Vanilla Mulmuley–Vazirani–Vazirani time: poly(#nodes, #edges, max weight) Our target running time: $poly(#nodes) \cdot (#edges + max weight)$

Idea: apply Isolation Lemma to pa

Algorithm: compute Pfaffian pf(*A*) of adjacency matrix. like determinant, but cooler!

 $pf(A) \stackrel{\text{def}}{=} \sum \left\{ sgn_{\sim} \right\}$

 \implies pf(A) can be computed in $O^*(2^k)$ time

Output: is coefficient at $x^{k2^k+(2^k-1)}$ in pf(A) nonzero?

O(n) nodes $O(2^k \cdot n^2)$ edges $O(2^k \cdot k)$ max weight

add edge $i \leftrightarrow j$ with weight f(S) = |S|bitmask

bairs of nodes instead of (multi-)edges.

$$n^2$$
 $2^k n^2$

random weight from
$$[2n^2]$$

for Isolation Lemma
 \downarrow^{\downarrow}
 $A_{ij} = \lambda^{c(i,j)} \sum_{S} x^{f(S)}$
 $= 2 \cdot \# \text{edges}^n$

$$\mathcal{M} \cdot \prod_{(i,j) \in \mathcal{M}} A_{i,j} \mid \mathcal{M} \text{ perfect matching}$$

A is a matrix of univariate polynomials of degree $O(k2^k)$ and $O(n^3)$ -bit coefficients