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The Bin Packing problem

Given n items x1, x2, . . . , xn ∈Q⩾0, and number ℓ of unit-sized bins,
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ℓ= 4 ×

decide if the items can be packed into the bins.
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Bin packing is NP-hard, but. . .

. . . Bin Packing is easy when all items are large

∀i x i > 1/3 =⇒ at most two items per bin

Matching in compatibility graph on items: edge x↔ j iff x i + x j ⩽ 1
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#bins = n−#matched edges

Bin Packing with Few Small Items

Bin Packing parameterized by the number of small items k = #
�

i | x i ⩽ 1/3
	

︸ ︷︷ ︸

“distance to triviality”

Distance to triviality is a popular parameter in FPT literature, e.g.:

• Vertex Cover parameterized above matching

• Dominating Set parameterized by treewidth

• Longest Common Subsequence parameterized by maximum occurrence number

Our main result

Bin Packing with Few Small Items can be solved in O∗(2k) time.

Two ingredients:

• Reduction to Exact Weighted Perfect Matching

• Careful variant of Mulmuley–Vazirani–Vazirani exact matching algorithm

Previous best: O∗(k!4k) [Bannach et al., 2020]

What else is in the paper?

• O∗(2k) time algorithms for

⋄Vector† Bin Packing with Few Small Items
⋄(Vector) Bin Covering with Few Small Items
⋄(Vector) Multiple Knapsack with Few Small Items
⋄ Perfect Matching with Hitting Constraints

• Lower bound under SETH

⋄ no O∗(2(1−ϵ)n) time algorithm for Vector Bin Packing‡

⋄ no O∗(2(1−ϵ)k) time algorithm for Vector Bin Packing with Few Small Items

† items from Qd
⩾0 require a more complex notion of large items [Bannach et al., 2020]

‡ for (one-dimensional) Bin Packing no cn lower bound is known (similarly to Subset
Sum), and it is an important open problem to find one

This is not a Pfaffian.

Bin Packing with Few Small Items→ Exact Matching

1. Add 2ℓ− (n− k) dummy zero-sized “large” items
=⇒ Exactly two large items in each bin

2. Create compatibility (multi-)graph on large (and dummy) items

for i ∈ large items do
for j ∈ large items do

for S ∈ 2small items do
if x i + x j +
∑

s∈S xs ⩽ 1 then

add edge i↔ j with weight f (S) = |S| · 2k

︸ ︷︷ ︸

bitcount

+
∑

i∈S

2i

︸ ︷︷ ︸

bitmask

3. Find perfect matching of total weight k2k + (2k − 1)

Lemma: f (S1) + f (S2) + · · ·+ f (Sm) = k2k + (2k − 1)

⇔ S1, S2, . . . , Sm is a partition of [k]

Exact Matching in multigraphs with large weights

Vanilla Mulmuley–Vazirani–Vazirani time: poly(#nodes,#edges, max weight)

Our target running time: poly(#nodes) · (#edges+max weight)

Idea: apply Isolation Lemma to pairs of nodes
︸ ︷︷ ︸

n2

instead of (multi-)edges
︸ ︷︷ ︸

2kn2

.

Algorithm: compute Pfaffian
↑

like determinant, but cooler!

pf(A) of adjacency matrix.
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Ai j = λ↑
=2·#edgesn

random weight from [2n2]
for Isolation Lemma
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M perfect matching
ª

A is a matrix of univariate polynomials of degree O(k2k) and O(n3)-bit coefficients
=⇒ pf(A) can be computed in O∗(2k) time

Output: is coefficient at x k2k+(2k−1) in pf(A) nonzero?

O(n) nodes
O(2k · n2) edges
O(2k · k) max weight


