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recompute from scratch
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Best of both worlds: learning-augmented algorithms (algorithms with predictions)
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Predictions can improve competitive ratio of online algorithms
E.g.: caching [Lykouris, Vassilvitskii, ICML’18]

Prediction: When currently requested item will be requested again?

Result: O(min(log k,
√

η/OPT ))-competitive algorithm (without predictions Θ(log k) is tight)

source: arxiv.org/abs/2006.16239



Predictions can improve running time of static algorithms
E.g.: max weight bipartite matching [Dinitz, Im, Lavastida, Moseley, Vassilvitskii, NeurIPS’21]

Prediction: dual LP solution

Result: O(m
√
n · min(

√
n, η)) time algorithm

(without predictions O(mn) time Hungarian algorithm often used in practice)

Primal:

minimize
∑
e∈E

cexe

subject to
∑

e∈N(v)

xe = 1 ∀ v ∈ V

xe ⩾ 0 ∀ e ∈ E

Dual:

maximize
∑
v∈V

yv

subject to yu + yv ⩽ cu,v ∀ (u, v) ∈ E



Predictions can improve approximation ratio of
polynomial time approximation algorithms

E.g.: k-means clustering
[Ergun, Feng, Silwal, Woodruff, Zhou, ICLR’22]
[Gamlath, Lattanzi, Norouzi-Fard, Svensson, COLT’22]

Prediction: (noisy) clustering
Result: (1 + ε)-approximation algorithm
(without predictions Θ(1) is tight)



https://algorithms-with-predictions.github.io/
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• Let’s predict future
• Let’s improve running time

Perfect and full knowledge about future = offline dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them

OMv
Open problem: Prove a stronger-than-offline lower bound against online dynamic algorithms
under a static hypothesis (e.g., SETH, 3SUM)

see also [Bringmann, Grønlund, Künnemann, Larsen, ITCS’24]



Online matrix-vector multiplication hypothesis [HKNS’15]
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• M — Boolean n× n matrix , given offline
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Output: Mv1,Mv2, . . . ,Mvn

Hypothesis: requires n3−o(1) time
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Does not hold offline — compute M · [v1, . . . , vn] in O(nω) time
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• Preprocessing in O(nω) time
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Mvi = M(vi − v̂i + v̂i) = M(vi − v̂i) +Mv̂i

over integers!

O(nηi) O(n)

Total time: O(nω + nη), η =
∑n

i=1 ηi
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Thank you!


