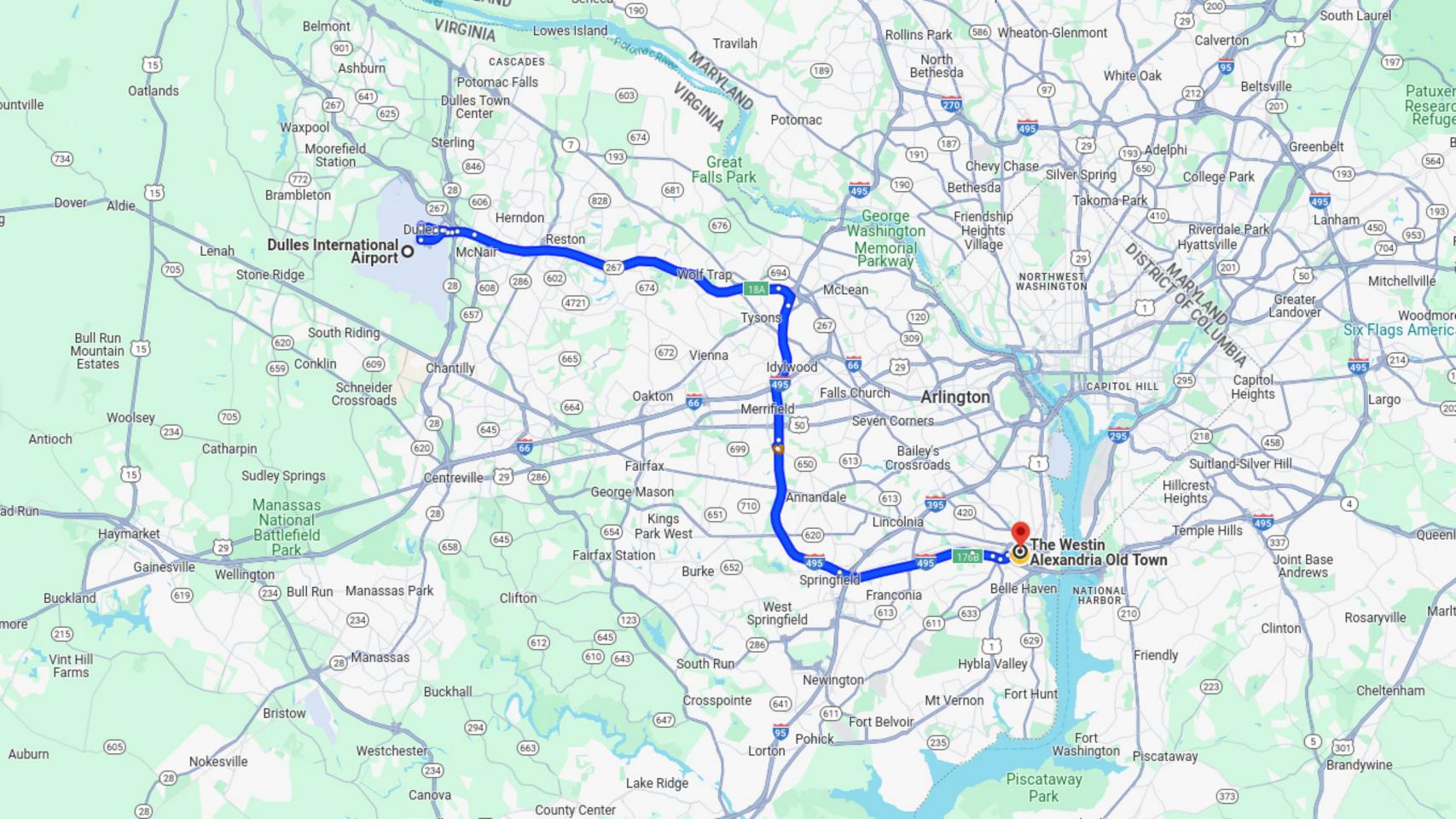
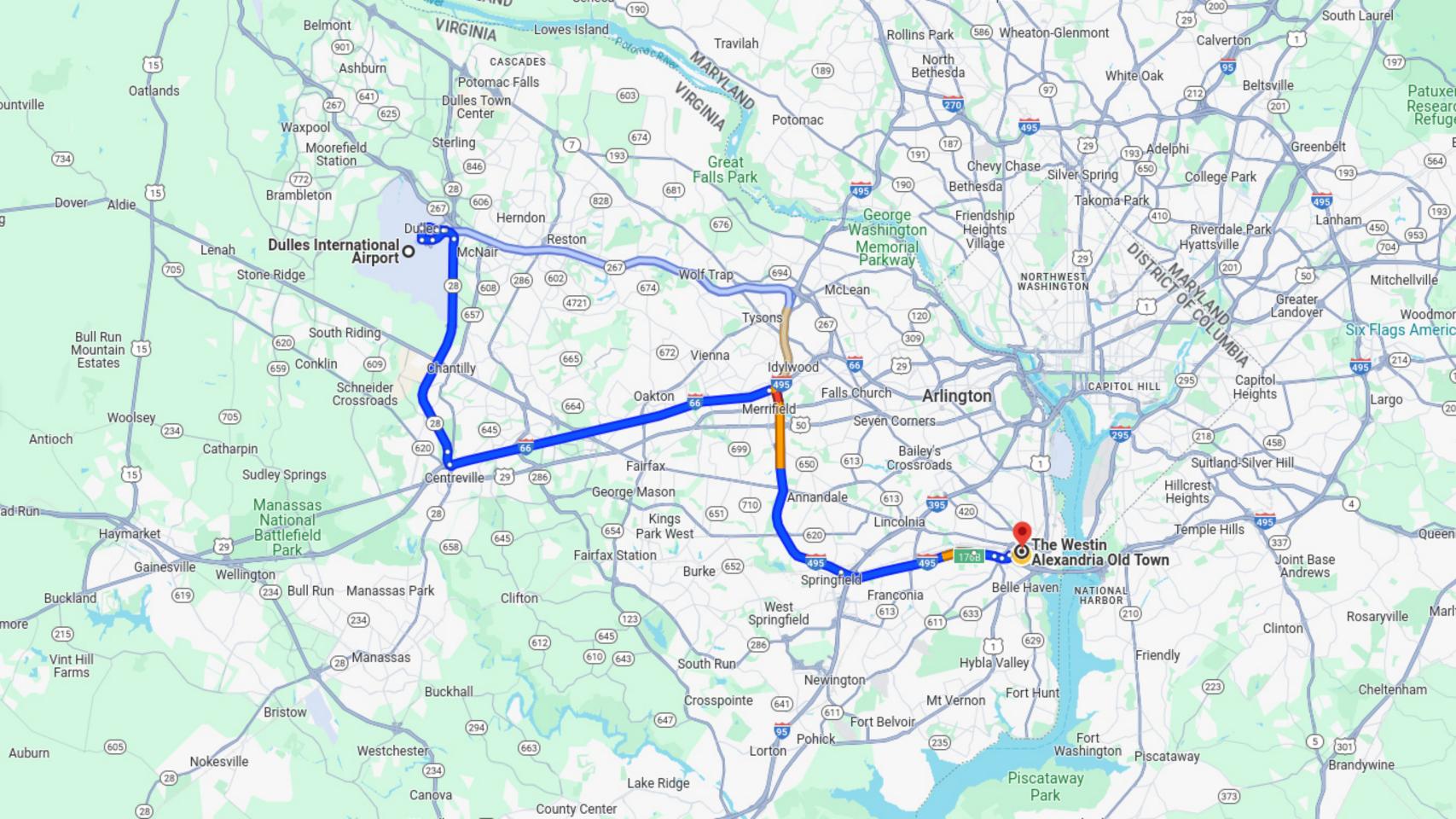
On Dynamic Graph Algorithms with Predictions

Jan van den Brand Georgia Tech Sebastian Forster University of Salzburg

Yasamin Nazari VU Amsterdam Adam Polak
Bocconi University





Dynamic algorithms

Data structures, but for fancier queries

Operations:

- **updates** e.g., add edge, delete edge
- queries e.g., find a path from source to v, is the graph strongly connected?

Dynamic algorithms

Data structures, but for fancier queries

Operations:

- **updates** e.g., add edge, delete edge
- queries e.g., find a path from source to v, is the graph strongly connected?

recompute from scratch

sublinear update time

polylog update time

Classical algorithms

- worst-case guarantees
- overly pessimistic

Classical algorithms

- worst-case guarantees
- overly pessimistic

Machine learning

- powerful for typical inputs
- no guarantees, can go crazy

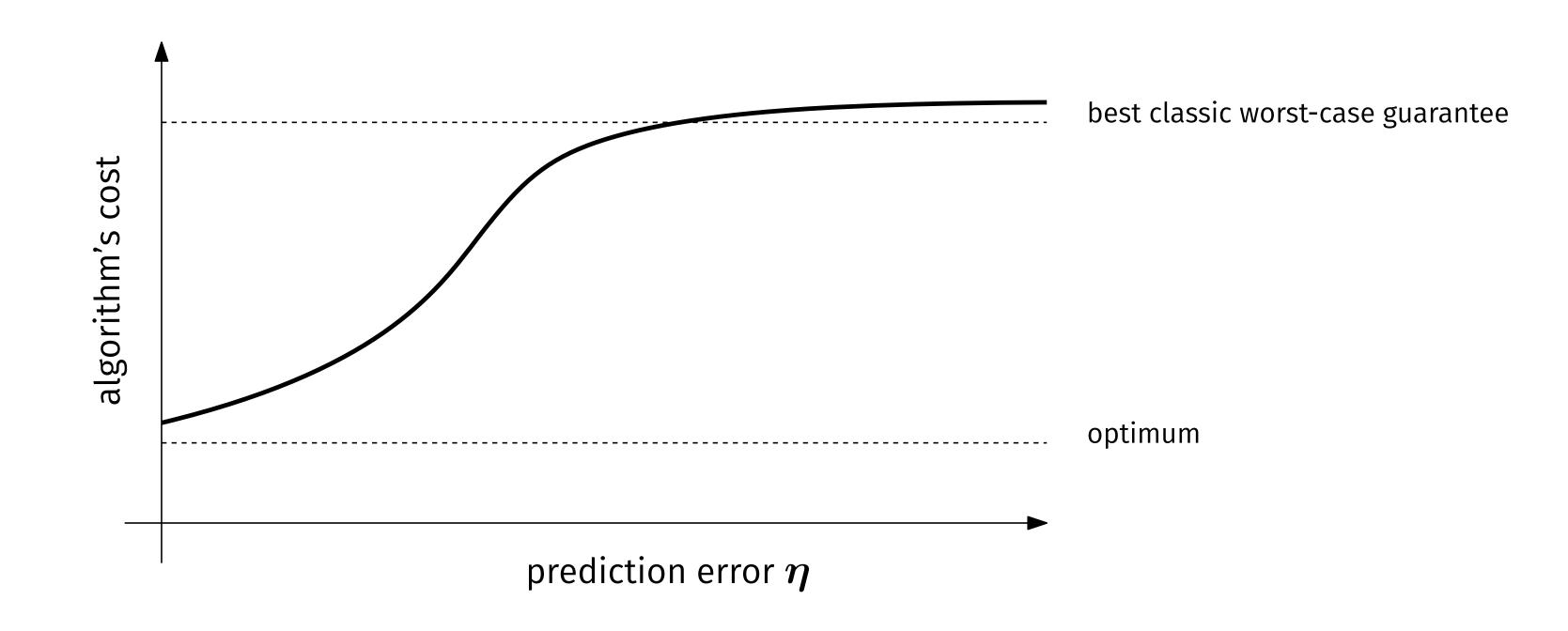
Classical algorithms

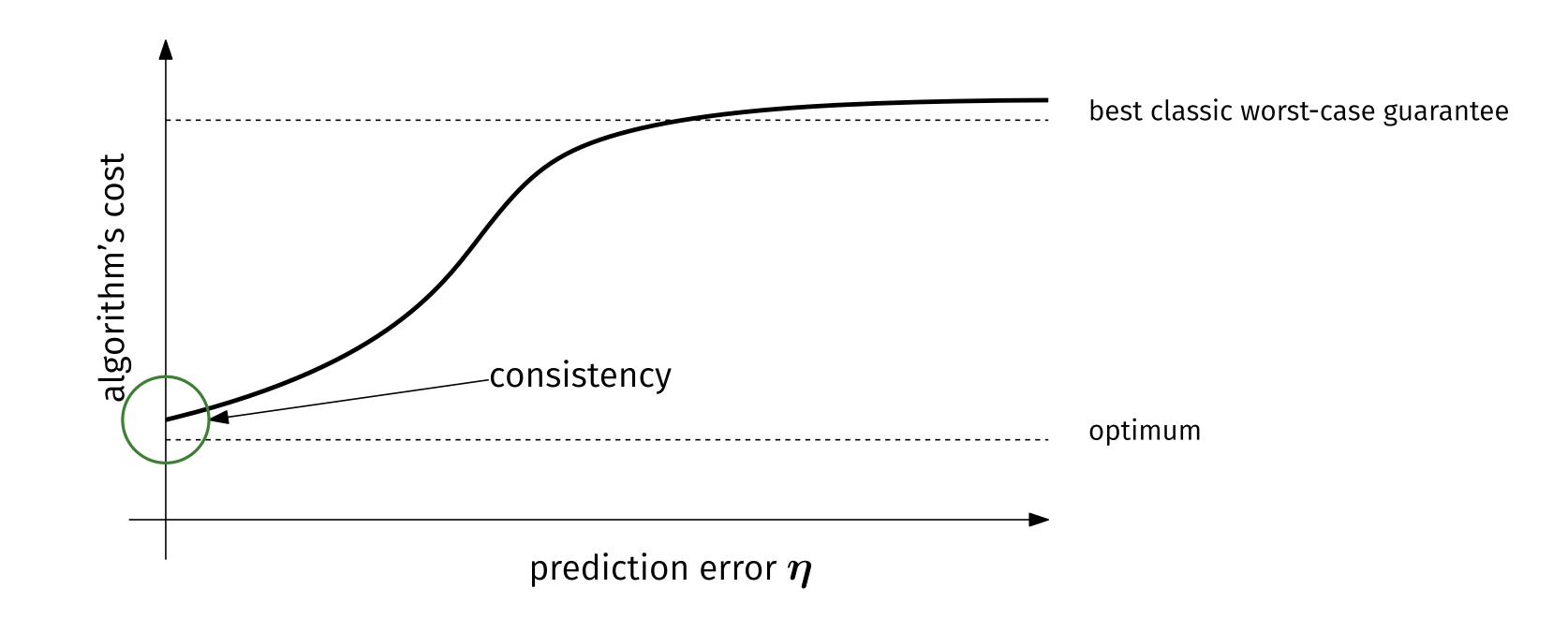
- worst-case guarantees
- overly pessimistic

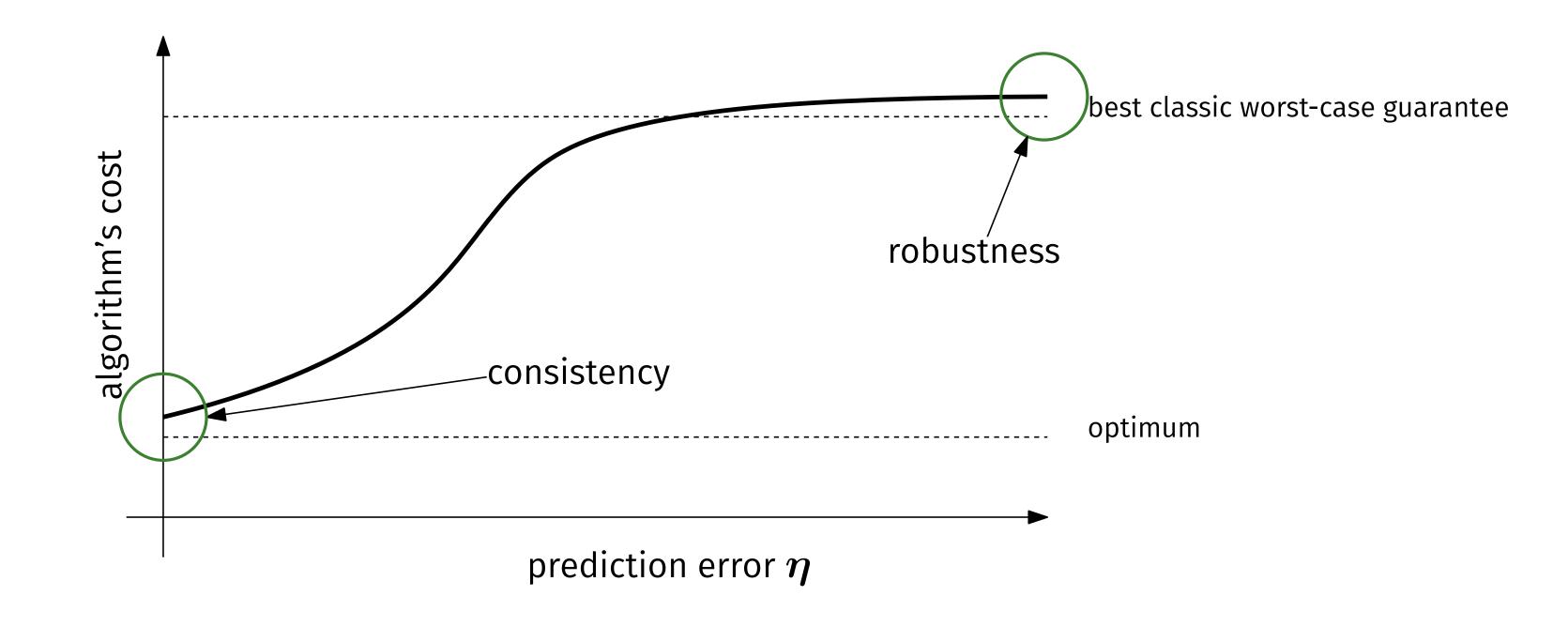
Machine learning

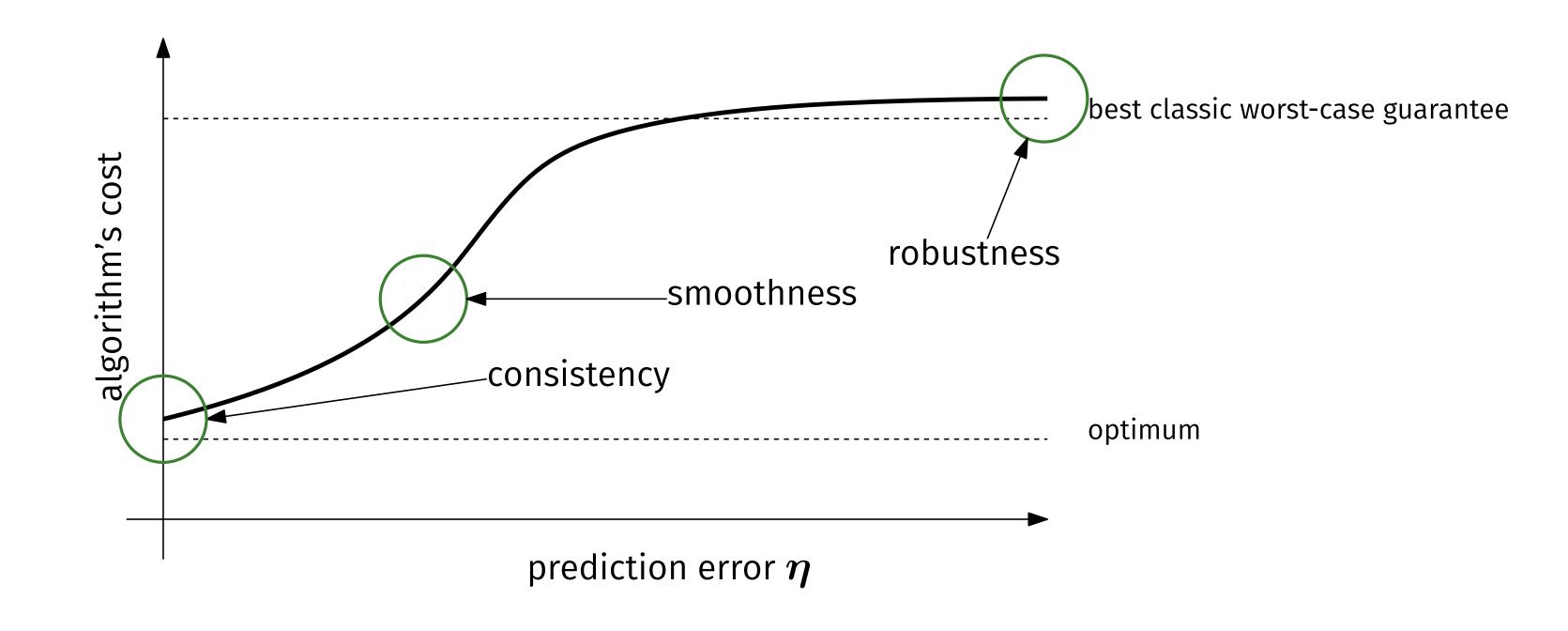
- powerful for typical inputs
- no guarantees, can go crazy

Best of both worlds: learning-augmented algorithms (algorithms with predictions)





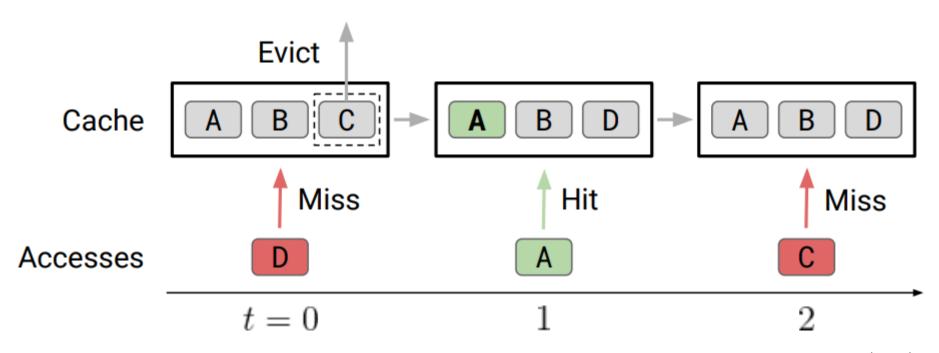




Predictions can improve competitive ratio of online algorithms

E.g.: caching

[Lykouris, Vassilvitskii, ICML'18]



source: arxiv.org/abs/2006.16239

Prediction: When currently requested item will be requested again?

Result: $O(\min(\log k, \sqrt{\eta/OPT}))$ -competitive algorithm (without predictions $\Theta(\log k)$ is tight)

Predictions can improve running time of static algorithms

E.g.: max weight bipartite matching

[Dinitz, Im, Lavastida, Moseley, Vassilvitskii, NeurIPS'21]

Prediction: dual LP solution

Result: $O(m\sqrt{n}\cdot \min(\sqrt{n},\eta))$ time algorithm

(without predictions O(mn) time Hungarian algorithm often used in practice)

Predictions can improve **approximation ratio** of polynomial time **approximation** algorithms

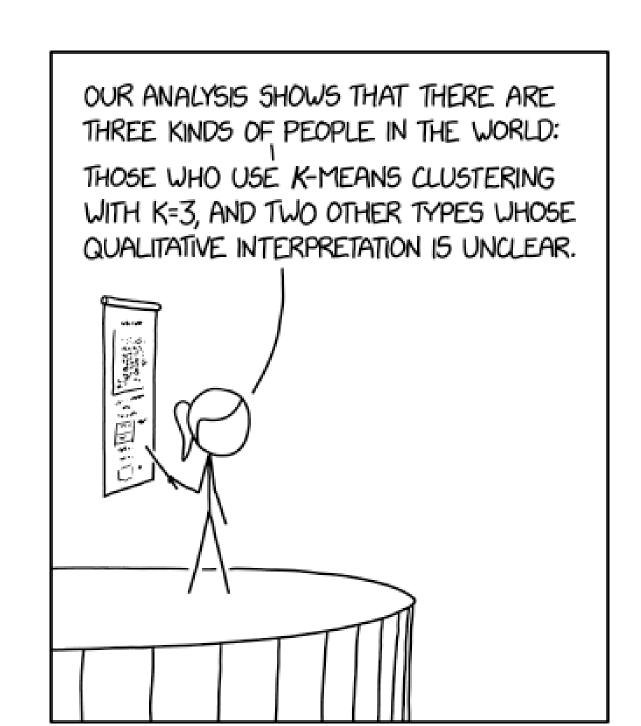
E.g.: k-means clustering

[Ergun, Feng, Silwal, Woodruff, Zhou, ICLR'22] [Gamlath, Lattanzi, Norouzi-Fard, Svensson, COLT'22]

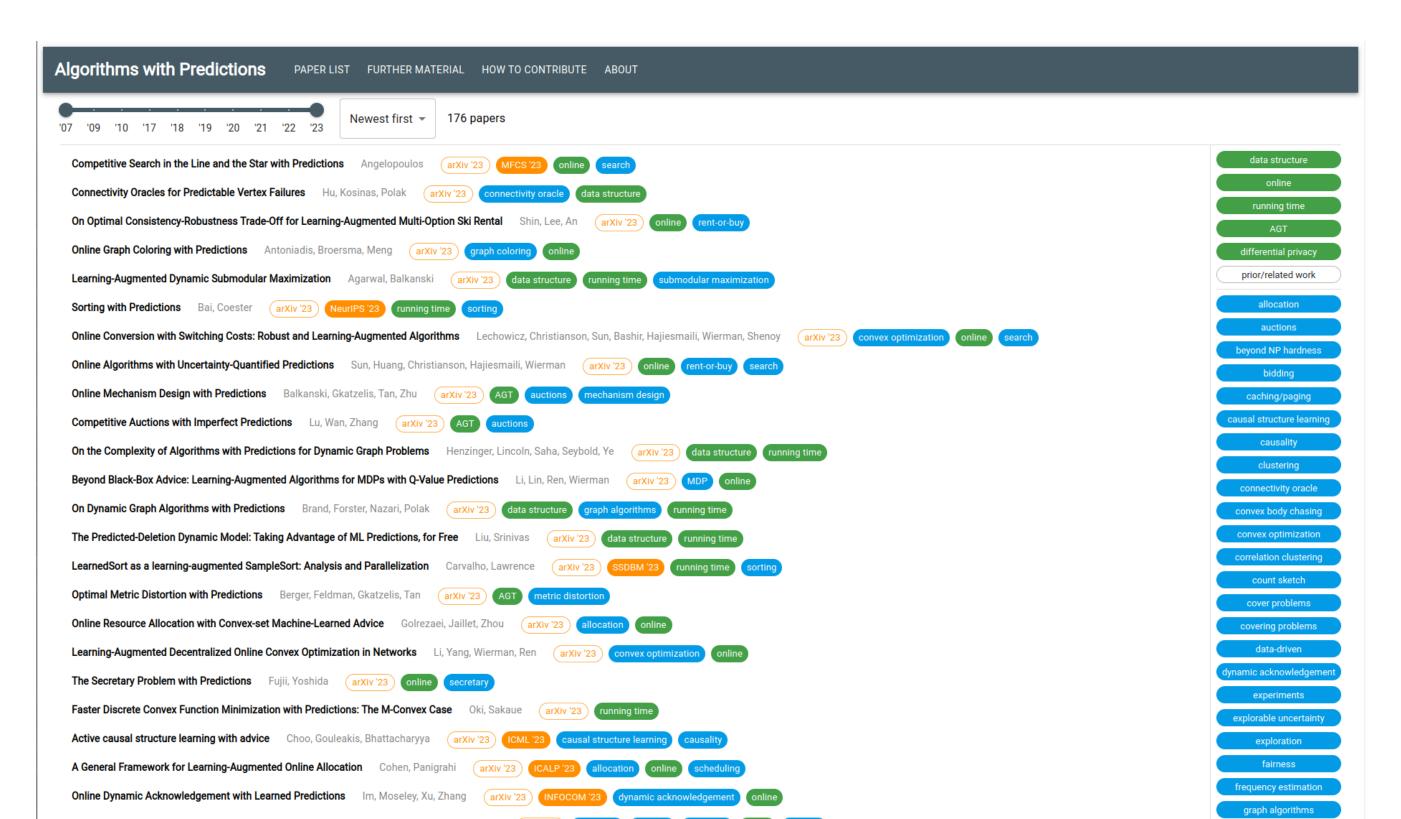
Prediction: (noisy) clustering

Result: $(1 + \varepsilon)$ -approximation algorithm

(without predictions $\Theta(1)$ is tight)



https://algorithms-with-predictions.github.io/



- Let's predict future
- Let's improve running time

- Let's predict future
- Let's improve running time

Perfect and **full** knowledge about future = **offline** dynamic algorithms

- Let's predict future
- Let's improve running time

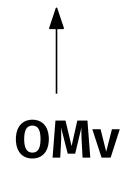
Perfect and **full** knowledge about future = **offline** dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them

- Let's predict future
- Let's improve running time

Perfect and **full** knowledge about future = **offline** dynamic algorithms

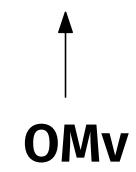
Ideal result: With predictions we can do what is (provably) impossible without them



- Let's predict future
- Let's improve running time

Perfect and **full** knowledge about future = **offline** dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them

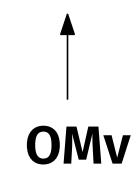


Open problem: Prove a stronger-than-offline **lower bound** against **online dynamic** algorithms under a **static hypothesis** (e.g., SETH, 3SUM)

- Let's predict future
- Let's improve running time

Perfect and **full** knowledge about future = **offline** dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them



Open problem: Prove a stronger-than-offline **lower bound** against **online dynamic** algorithms under a **static hypothesis** (e.g., SETH, 3SUM)

∖see also [Bringmann, Grønlund, Künnemann, Larsen, ITCS'24]

Online matrix-vector multiplication hypothesis

[HKNS'15]

Input:

- M Boolean $n \times n$ matrix, given **offline**
- v_1, \ldots, v_n Boolean $n \times 1$ vectors, given one by one **online**

Output: Mv_1, Mv_2, \dots, Mv_n

Hypothesis: requires $n^{3-o(1)}$ time

[HKNS'15]

Input:

- M Boolean $n \times n$ matrix, given **offline**
- v_1, \ldots, v_n Boolean $n \times 1$ vectors, given one by one **online**

Output: Mv_1, Mv_2, \dots, Mv_n

Hypothesis: requires $n^{3-o(1)}$ time

Does not hold offline — compute $M \cdot [v_1, \ldots, v_n]$ in $O(n^{\omega})$ time

Online matrix-vector multiplication with predictions

[this work]

Input:

- M Boolean $n \times n$ matrix, given **offline**
- $\hat{v}_1, \dots, \hat{v}_n$ predicted vectors, given offline
- v_1, \ldots, v_n Boolean $n \times 1$ vectors, given one by one **online**

Output: Mv_1, Mv_2, \ldots, Mv_n

Online matrix-vector multiplication with predictions

[this work]

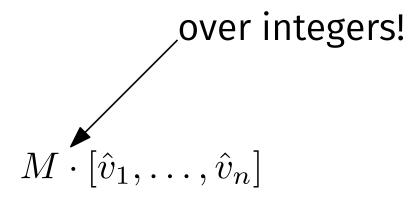
Input:

- M Boolean $n \times n$ matrix, given **offline**
- $\hat{v}_1, \dots, \hat{v}_n$ predicted vectors, given offline
- v_1, \ldots, v_n Boolean $n \times 1$ vectors, given one by one **online**

Output: Mv_1, Mv_2, \dots, Mv_n

Algorithm:

• Preprocessing in $O(n^{\omega})$ time



• Each request in $O(n\eta_i)$ time, $\eta_i = ||v_i - \hat{v}_i||_1 = ||v_i - \hat{v}_i||_0$

$$Mv_i = M(v_i - \hat{v}_i + \hat{v}_i) = M(v_i - \hat{v}_i) + M\hat{v}_i$$

$$\uparrow \qquad \qquad \uparrow$$

$$O(nn_i) \qquad O(nn_i)$$

Online matrix-vector multiplication with predictions

[this work]

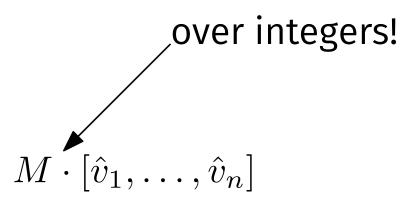
Input:

- M Boolean $n \times n$ matrix, given **offline**
- $\hat{v}_1, \dots, \hat{v}_n$ predicted vectors, given offline
- v_1, \ldots, v_n Boolean $n \times 1$ vectors, given one by one **online**

Output: Mv_1, Mv_2, \dots, Mv_n

Algorithm:

• Preprocessing in $O(n^{\omega})$ time



• Each request in $O(n\eta_i)$ time, $\eta_i = ||v_i - \hat{v}_i||_1 = ||v_i - \hat{v}_i||_0$

$$Mv_i = M(v_i - \hat{v}_i + \hat{v}_i) = M(v_i - \hat{v}_i) + M\hat{v}_i$$

$$\uparrow$$
 $O(n\eta_i)$
 $O(n)$

Total time:
$$O(n^{\omega} + n\eta)$$
, $\eta = \sum_{i=1}^{n} \eta_i$

Update: add directed edge (u, v)

Query: is there a path from a to b?

Update: add directed edge (u, v)

Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)

Lower bound: n^2 updates and n^2 queries require $n^{3-o(1)}$ time, under OMv

Update: add directed edge (u, v)Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)

Lower bound: n^2 updates and n^2 queries require $n^{3-o(1)}$ time, under OMv

Offline = all-pairs bottleneck paths $(O(n^{(3+\omega)/2}) \le O(n^{2.687})$ time, via min-max matrix product)

 $\qquad \qquad D[\boldsymbol{a}, \boldsymbol{b}] = \min_{\boldsymbol{P} \in \{\text{paths from } \boldsymbol{a} \text{ to } \boldsymbol{b}\}} \max_{\boldsymbol{e} \in \boldsymbol{P}} weight(\boldsymbol{e})$

Update: add directed edge (u, v)Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)

Lower bound: n^2 updates and n^2 queries require $n^{3-o(1)}$ time, under OMv

Offline = all-pairs bottleneck paths $(O(n^{(3+\omega)/2}) \le O(n^{2.687})$ time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

Update: add directed edge (u, v)Query: is there a path from a to b?

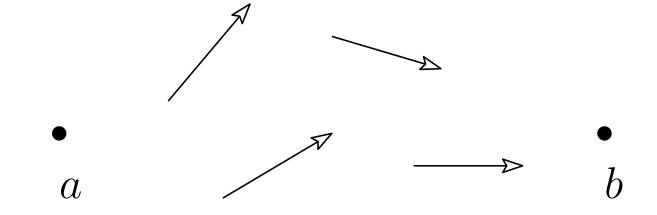
Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)

Lower bound: n^2 updates and n^2 queries require $n^{3-o(1)}$ time, under OMv

Offline = all-pairs bottleneck paths $(O(n^{(3+\omega)/2}) \le O(n^{2.687})$ time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges "on the side" $\Longrightarrow O(k^2)$ query time $k \leqslant \ell_\infty$ error of predictions



Update: add directed edge (u, v)Query: is there a path from a to b?

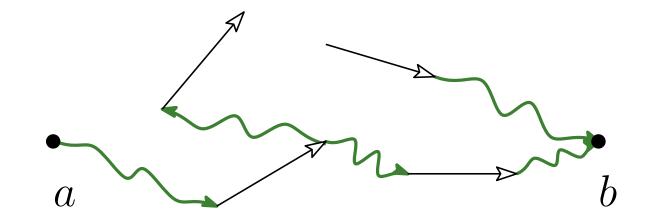
Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)

Lower bound: n^2 updates and n^2 queries require $n^{3-o(1)}$ time, under OMv

Offline = all-pairs bottleneck paths $(O(n^{(3+\omega)/2}) \le O(n^{2.687})$ time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges "on the side" $\Longrightarrow O(k^2)$ query time $k \leqslant \ell_\infty$ error of predictions



Update: add directed edge (u, v)Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)

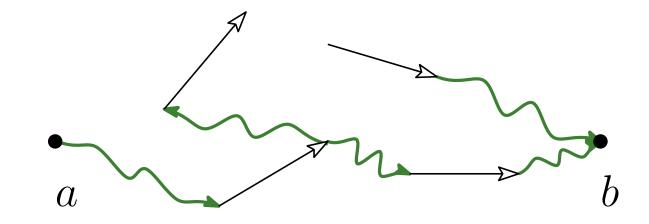
Lower bound: n^2 updates and n^2 queries require $n^{3-o(1)}$ time, under OMv

Offline = all-pairs bottleneck paths $(O(n^{(3+\omega)/2}) \le O(n^{2.687})$ time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges "on the side" $\Longrightarrow O(k^2)$ query time $k \leqslant \ell_\infty$ error of predictions

O(1) query time \iff dynamic APBP



Update: add directed edge (u, v)

Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)

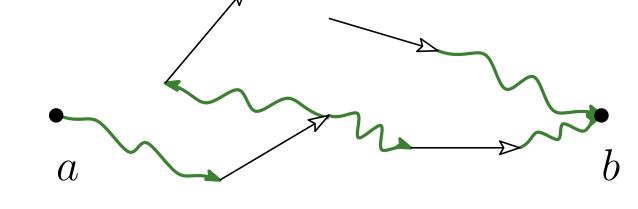
Lower bound: n^2 updates and n^2 queries require $n^{3-o(1)}$ time, under OMv

Offline = all-pairs bottleneck paths $(O(n^{(3+\omega)/2}) \le O(n^{2.687})$ time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges "on the side" $\Longrightarrow O(k^2)$ query time $k \leqslant \ell_\infty$ error of predictions

O(1) query time \iff dynamic APBP



incremental: $O(n^2)$ fully dynamic: $O(n^{2.5})$

[via APSP]

Update: add directed edge (u, v)

Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)

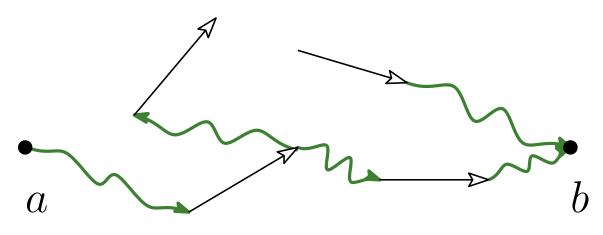
Lower bound: n^2 updates and n^2 queries require $n^{3-o(1)}$ time, under OMv

Offline = all-pairs bottleneck paths $(O(n^{(3+\omega)/2}) \le O(n^{2.687})$ time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges "on the side" $\Longrightarrow O(k^2)$ query time $k \leqslant \ell_\infty$ error of predictions

O(1) query time \iff dynamic APBP



Partially dynamic (edge insertions **or** deletions)

Prediction: list of **updates**

- Transitive closure
- Aproximate APSP

```
Preprocessing O(n^{2.687}) Update O(1) Query O(\eta^2)
```

 ℓ_{∞} prediction error rianlge

Partially dynamic

(edge insertions **or** deletions)

Prediction: list of updates

- Transitive closure
- Aproximate APSP

Preprocessing $O(n^{2.687})$ Update O(1)

Query $O(\eta^2)$

 ℓ_{∞} prediction error rianlge

Fully dynamic

(edge insertions **and** deletions)

Prediction: list of operations

- Triangle detection
- Exact matching
- Single-source reachability
- many more...

Preprocessing $O(n^{2.373})$

Update $O(n^{1.373} + n\eta_i)$

Query $O(n^{1.373} + n\eta_i)$

 ℓ_1 error per operation riangle

Partially dynamic

(edge insertions **or** deletions)

Prediction: list of updates

- Transitive closure
- Aproximate APSP

Preprocessing $O(n^{2.687})$

Update O(1

Query $O(\eta^2)$

 ℓ_{∞} prediction error o

Fully dynamic

(edge insertions **and** deletions)

Prediction: list of operations

- Triangle detection
- Exact matching
- Single-source reachability
- many more...

Preprocessing $O(n^{2.373})$

Update $O(n^{1.373} + n\eta_i)$

Query $O(n^{1.373} + n\eta_i)$

 ℓ_1 error per operation riangle

Fully dynamic

(edge insertions **and** deletions)

Prediction: **deletion** times

(given during insertions)

 All-pairs shortest paths (Exact APSP)

Preprcessing —

Update $\tilde{O}(n^2)$

Query $ilde{O}(n^2\eta_i)$

 ℓ_1 error per operation riangle

Partially dynamic

(edge insertions **or** deletions)

Prediction: list of **updates**

Prediction: list of **operations**

(edge insertions **and** deletions)

- Transitive closure
- Aproximate APSP

 $O(n^{2.687})$

Update

Preprocessing

 $O(\eta^2)$

 ℓ_{∞} prediction error rianlge

Triangle detectionExact matching

Single-source reachability

many more...

Fully dynamic

Preprocessing $O(n^{2.373})$

Update $O(n^{1.373} + n\eta_i)$

Query $O(n^{1.373} + n\eta_i)$

 ℓ_1 error per operation riangle

____ see also [Liu, Srinivas, 2023]

Fully dynamic

(edge insertions **and** deletions)

Prediction: **deletion** times (given during insertions)

 All-pairs shortest paths (Exact APSP)

Preprcessing —

Update $\tilde{O}(n^2)$

Query $ilde{O}(n^2\eta_i)$

 ℓ_1 error per operation $oldsymbol{\perp}$

Query

see also [Henzinger, Saha, Seybold, Ye, ITCS'24]

Partially dynamic

(edge insertions **or** deletions)

Prediction: list of **updates**

Prediction: list of operations

(edge insertions **and** deletions)

- Transitive closure
- Aproximate APSP

 $O(n^{2.687})$

Update O(1)

Preprocessing

Query $O(\eta^2)$

 ℓ_{∞} prediction error o

Triangle detection

Exact matching

Fully dynamic

Single-source reachability

many more...

Preprocessing $O(n^{2.373})$

Update $O(n^{1.373} + n\eta_i)$

Query $O(n^{1.373} + n\eta_i)$

 ℓ_1 error per operation riangle

see also [Liu, Srinivas, 2023]

Fully dynamic

(edge insertions **and** deletions)

Prediction: **deletion** times (given during insertions)

 All-pairs shortest paths (Exact APSP)

Preprcessing —

Update $\tilde{O}(n^2)$

Query $ilde{O}(n^2\eta_i)$

 ℓ_1 error per operation $oldsymbol{\perp}$

see also [Henzinger, Saha, Seybold, Ye, ITCS'24]

