
On Dynamic Graph Algorithms with Predictions

Jan van den Brand Sebastian Forster Yasamin Nazari Adam Polak
Georgia Tech University of Salzburg VU Amsterdam Bocconi University

Dynamic algorithms

Data structures, but for fancier queries

Operations:
• updates

e.g., add edge, delete edge
• queries

e.g., find a path from source to v,
is the graph strongly connected?

Dynamic algorithms

Data structures, but for fancier queries

Operations:
• updates

e.g., add edge, delete edge
• queries

e.g., find a path from source to v,
is the graph strongly connected?

recompute from scratch

sublinear update time

polylog update time

Classical algorithms
• worst-case guarantees
• overly pessimistic

Classical algorithms
• worst-case guarantees
• overly pessimistic

Machine learning
• powerful for typical inputs
• no guarantees, can go crazy

Classical algorithms
• worst-case guarantees
• overly pessimistic

Machine learning
• powerful for typical inputs
• no guarantees, can go crazy

Best of both worlds: learning-augmented algorithms (algorithms with predictions)

Learning-augmented algorithms
Input + black-box predictions (possibly inacurate, with some error η)

Learning-augmented algorithms
Input + black-box predictions (possibly inacurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimum

best classic worst-case guarantee

Learning-augmented algorithms
Input + black-box predictions (possibly inacurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimum

best classic worst-case guarantee

consistency

Learning-augmented algorithms
Input + black-box predictions (possibly inacurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimum

best classic worst-case guarantee

consistency

robustness

Learning-augmented algorithms
Input + black-box predictions (possibly inacurate, with some error η)

prediction error η

al
go

rit
hm

’s
co

st

optimum

best classic worst-case guarantee

consistency

robustness
smoothness

Predictions can improve competitive ratio of online algorithms
E.g.: caching [Lykouris, Vassilvitskii, ICML’18]

Prediction: When currently requested item will be requested again?

Result: O(min(log k,
√

η/OPT))-competitive algorithm (without predictions Θ(log k) is tight)

source: arxiv.org/abs/2006.16239

Predictions can improve running time of static algorithms
E.g.: max weight bipartite matching [Dinitz, Im, Lavastida, Moseley, Vassilvitskii, NeurIPS’21]

Prediction: dual LP solution

Result: O(m
√
n · min(

√
n, η)) time algorithm

(without predictions O(mn) time Hungarian algorithm often used in practice)

Primal:

minimize
∑
e∈E

cexe

subject to
∑

e∈N(v)

xe = 1 ∀ v ∈ V

xe ⩾ 0 ∀ e ∈ E

Dual:

maximize
∑
v∈V

yv

subject to yu + yv ⩽ cu,v ∀ (u, v) ∈ E

Predictions can improve approximation ratio of
polynomial time approximation algorithms

E.g.: k-means clustering
[Ergun, Feng, Silwal, Woodruff, Zhou, ICLR’22]
[Gamlath, Lattanzi, Norouzi-Fard, Svensson, COLT’22]

Prediction: (noisy) clustering
Result: (1 + ε)-approximation algorithm
(without predictions Θ(1) is tight)

https://algorithms-with-predictions.github.io/

How predictions can improve dynamic algorithms?

How predictions can improve dynamic algorithms?

• Let’s predict future
• Let’s improve running time

How predictions can improve dynamic algorithms?

• Let’s predict future
• Let’s improve running time

Perfect and full knowledge about future = offline dynamic algorithms

How predictions can improve dynamic algorithms?

• Let’s predict future
• Let’s improve running time

Perfect and full knowledge about future = offline dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them

How predictions can improve dynamic algorithms?

• Let’s predict future
• Let’s improve running time

Perfect and full knowledge about future = offline dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them

OMv

How predictions can improve dynamic algorithms?

• Let’s predict future
• Let’s improve running time

Perfect and full knowledge about future = offline dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them

OMv
Open problem: Prove a stronger-than-offline lower bound against online dynamic algorithms
under a static hypothesis (e.g., SETH, 3SUM)

How predictions can improve dynamic algorithms?

• Let’s predict future
• Let’s improve running time

Perfect and full knowledge about future = offline dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them

OMv
Open problem: Prove a stronger-than-offline lower bound against online dynamic algorithms
under a static hypothesis (e.g., SETH, 3SUM)

see also [Bringmann, Grønlund, Künnemann, Larsen, ITCS’24]

Online matrix-vector multiplication hypothesis [HKNS’15]

Input:
• M — Boolean n× n matrix , given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Hypothesis: requires n3−o(1) time

Online matrix-vector multiplication hypothesis [HKNS’15]

Input:
• M — Boolean n× n matrix , given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Hypothesis: requires n3−o(1) time

Does not hold offline — compute M · [v1, . . . , vn] in O(nω) time

Online matrix-vector multiplication with predictions [this work]

Input:
• M — Boolean n× n matrix , given offline
• v̂1, . . . , v̂n — predicted vectors, given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Online matrix-vector multiplication with predictions [this work]

Input:
• M — Boolean n× n matrix , given offline
• v̂1, . . . , v̂n — predicted vectors, given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Algorithm:
• Preprocessing in O(nω) time

M · [v̂1, . . . , v̂n]

• Each request in O(nηi) time, ηi = ||vi − v̂i||1 = ||vi − v̂i||0

Mvi = M(vi − v̂i + v̂i) = M(vi − v̂i) +Mv̂i

over integers!

O(nηi) O(n)

Online matrix-vector multiplication with predictions [this work]

Input:
• M — Boolean n× n matrix , given offline
• v̂1, . . . , v̂n — predicted vectors, given offline
• v1, . . . , vn — Boolean n× 1 vectors, given one by one online

Output: Mv1,Mv2, . . . ,Mvn

Algorithm:
• Preprocessing in O(nω) time

M · [v̂1, . . . , v̂n]

• Each request in O(nηi) time, ηi = ||vi − v̂i||1 = ||vi − v̂i||0

Mvi = M(vi − v̂i + v̂i) = M(vi − v̂i) +Mv̂i

over integers!

O(nηi) O(n)

Total time: O(nω + nη), η =
∑n

i=1 ηi

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Offline = all-pairs bottleneck paths (O(n(3+ω)/2) ⩽ O(n2.687) time, via min-max matrix product)

D[a, b] = minP∈{paths from a to b}maxe∈P weight(e)

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Offline = all-pairs bottleneck paths (O(n(3+ω)/2) ⩽ O(n2.687) time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Offline = all-pairs bottleneck paths (O(n(3+ω)/2) ⩽ O(n2.687) time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

a b

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Offline = all-pairs bottleneck paths (O(n(3+ω)/2) ⩽ O(n2.687) time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

a b

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Offline = all-pairs bottleneck paths (O(n(3+ω)/2) ⩽ O(n2.687) time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

O(1) query time ⇐= dynamic APBP a b

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Offline = all-pairs bottleneck paths (O(n(3+ω)/2) ⩽ O(n2.687) time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

O(1) query time ⇐= dynamic APBP

incremental: O(n2)
fully dynamic: O(n2.5) [via APSP]

a b

Incremental transitive closure (a.k.a. all-pairs reachability)
Update: add directed edge (u, v)
Query: is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n2 updates and n2 queries require n3−o(1) time, under OMv

Offline = all-pairs bottleneck paths (O(n(3+ω)/2) ⩽ O(n2.687) time, via min-max matrix product)

Prediction: sequence of insertions. But, how to handle prediction errors?

k edges “on the side” =⇒ O(k2) query time
k ⩽ ℓ∞ error of predictions

O(1) query time ⇐= dynamic APBP

incremental: O(n2)
fully dynamic: O(n2.5) [via APSP] Open problem: Improve

a b

Our results for graph problems

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: list of updates

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: list of updates

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Fully dynamic
(edge insertions and deletions)

Prediction: list of operations

• Triangle detection
• Exact matching
• Single-source reachability
• many more. . .

Preprocessing O(n2.373)
Update O(n1.373 + nηi)
Query O(n1.373 + nηi)

ℓ1 error per operation

↰

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: list of updates

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Fully dynamic
(edge insertions and deletions)

Prediction: list of operations

• Triangle detection
• Exact matching
• Single-source reachability
• many more. . .

Preprocessing O(n2.373)
Update O(n1.373 + nηi)
Query O(n1.373 + nηi)

ℓ1 error per operation

↰

Fully dynamic
(edge insertions and deletions)

Prediction: deletion times
(given during insertions)

• All-pairs shortest paths
(Exact APSP)

Preprcessing —
Update Õ(n2)

Query Õ(n2ηi)

ℓ1 error per operation

↰

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: list of updates

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Fully dynamic
(edge insertions and deletions)

Prediction: list of operations

• Triangle detection
• Exact matching
• Single-source reachability
• many more. . .

Preprocessing O(n2.373)
Update O(n1.373 + nηi)
Query O(n1.373 + nηi)

ℓ1 error per operation

↰

Fully dynamic
(edge insertions and deletions)

Prediction: deletion times
(given during insertions)

• All-pairs shortest paths
(Exact APSP)

Preprcessing —
Update Õ(n2)

Query Õ(n2ηi)

ℓ1 error per operation

↰

see also [Henzinger, Saha, Seybold, Ye, ITCS’24]

see also [Liu, Srinivas, 2023]

Our results for graph problems

Partially dynamic
(edge insertions or deletions)

Prediction: list of updates

• Transitive closure
• Aproximate APSP

Preprocessing O(n2.687)
Update O(1)
Query O(η2)

ℓ∞ prediction error

↰

Fully dynamic
(edge insertions and deletions)

Prediction: list of operations

• Triangle detection
• Exact matching
• Single-source reachability
• many more. . .

Preprocessing O(n2.373)
Update O(n1.373 + nηi)
Query O(n1.373 + nηi)

ℓ1 error per operation

↰

Fully dynamic
(edge insertions and deletions)

Prediction: deletion times
(given during insertions)

• All-pairs shortest paths
(Exact APSP)

Preprcessing —
Update Õ(n2)

Query Õ(n2ηi)

ℓ1 error per operation

↰

see also [Henzinger, Saha, Seybold, Ye, ITCS’24]

see also [Liu, Srinivas, 2023]

Thank you!

