On Dynamic Graph Algorithms with Predictions

Jan van den Brand Sebastian Forster Yasamin Nazarli Adam Polak
Georgia Tech University of Salzburg VU Amsterdam Bocconi University



f

Belmont
h“:l,r'.

Rollins Park  (526) Wheaton-Glenmont

CASCADES # \}h

2y
i._"'.
C
[
=
]
=
|
E/E
E
=
[at]
=T

" S| Ashbum 759 Bethedd !
. ; N O ‘Pma@c Falls ) X g Whit
Oatlands - % Patuxer
untyille ulles Town, [ 0 27 Researt
| \ \J Center : da. Refuge
X .i : U : r 405
b 1 i | .'I E
- : Moorefield,_ | | (29 delphi
Mo & ' Ghonchse \ 'E’é j
i o - 2 tﬁP - _SilverSpring College Park
_——Dover=""3|di | Brambleton & @ — , 2 Takoma-Rark
] b | III.'I Herndon . i e .,_.GE_DrgE FI'IE'I'I Shlp [410) ; (1%3)
D “ S I Washington %lghfs - R gd?le Fark
[Bnah u gs nternationa . Memnngl Villag 5,-._% H;.,ra’rt vill
o ¥ |r|:|.|;|.|'tn i Parkway* - A e @
Wk, Trap. Do nNogmHwest/ | E‘ Mitchellvil
'- reater
Ti!'.ﬁ Lando Woodmor
o e . > P l |;-: Flags Americ
Mountain (15 ._ _ (672) nna
Estates Ennkl‘l‘n\ Chantilly (65 ﬁ/ Idylwood |
. | Eapl
' Schngider 455
. Ern_sg’gna - Oakton ¥ d__j:illg,{: urch :HE|ghts
s -:' @) .'- | .
Antioch B la L ‘ : } 2D (458]
Catharpin (620) bb‘- S,M : ¥
o I Fairfax CrosSroads j 7 Suitland®Silver Hill
Sudley Spnngs Centreville E (28¢) ¥ “ Hillcre i
\ / b George'Mason Heiaht ‘ _:.t
=dRu Manassas ; @) 9 )
Kings : = g 495
Hayrarket '@ Park West Temple Hills ‘ Qaeen
K (6s8), - Fairfax/Station = J ; * s 20 .I:%.I?:'.'?=1l|{:~:|""‘|'r|.e::lﬂrt|g.I Id Town int Base
Gainesvi = Burke Sn s i ‘Andrews
. JT2HE |
: o —— i Belle H | T
Bucklan : Clifton West Franconia F avenil ;"Hh%'n‘:#
- - ) Springfield 613) (633) | :“ (210) Rosaryville  Marl
e e 8 AS D (1) @RS
VintHill " fﬂﬁnﬂﬁﬁﬂs 1 ©9 6 N\ soutitRun Hyblalvalley| |
Farms b = A o by
I ot Newington Yl
Nt . Chelte
Emkhﬂ“ - |_ |... msEpDil‘itE Mt Vernon Fort HU'T'E J: nnaim
H ) 1y Fort Belvoir, ( /
. F Pohick P o --"“r Fort :
Aubum oksville W_Eﬁtﬂhﬂﬂﬂf -5 Lorton 45 Washington Plscataway
| % i A
(78) o 234 ' Lake Ridge - Piscataway —

Canova ! Park ——
x County Center i

(28)



\ Oatlands
i rmrlille

Bull Run
Mountain (15
Estates

Woolsey
Antioch @),

' Brambleton

B;».epljn‘:?g'ht ,
%

Ashburn

\
_Moorefield
Statipﬂ i

n, f | f
'\.-.__ _'

)

Conklin
\ Schngider

Crossroads

b 1

WRollins Park  '526) Wheaton-Glenmont

Bethesda b ; White
(57)
495 =
\E e3yAdelphi
-hevy/Chase

Sllver rin (£50)
Bethbsti 2 pring College Park

Researt
F!efugq

Takoma-Rar
e e <George Friendship 'EEJ'
Wﬁéhlngtnn Heights :

Memorial village
Parkway" -

clean e

(120)
(305)

dylwood~, @ _[25) ‘ ==
495’- ‘
Fall urcﬁ"-..__A lingto 1

=

\ Woodmor
ix Flags Americ

eld

-If:'aiharpin.
Sudley Springs _ 3 Faifte
y ) g Gearge/Mason
— anassas & T—
ad‘Ran e Kings X P T
3 M ; E’ark West | — X The WE Btln
Gainesville B Baigiasiation o~ 295 [ 2+ exﬁntlrla id Town Joint Base
ur e rews
. Springrigle : PG
P 2ocfaull) RN =bianR aRag E 4k Clifton i Frangonia BellcHaven’ wariowad
N P West @ @ r |I.l @ p
more ' (1235 Springfield 4 &) , Rosaryville
: @
hgg}nhlgl (o] RrmEs South Run 2 HyblalValley l !
Buckhall AV NI | Chettefiham
I 3 . _t uc = | | - , |.. rDEEpDinte @ Mt Vernon Fort HUth: J"
ristow \ ) :
e TG e Fort Belvoir f_-;;
- A Pohick il L Fort '
Auburn : Westchester Lorton i WEsmngtDn
okesville an — Plsca‘{away <
*, rr" . . &
(28) . Lake Ridge - Piscataway o
Canova Park

County Center




Dynamic algorithms

Data structures, but for fancier queries

Operations:

- updates
e.g., add edge, delete edge

- queries
e.g., find a path from source to v,
Is the graph strongly connected?



Dynamic algorithms

recompute from scratch

Data structures, but for fancier queries sublinear update time

Operations:

- updates
e.g., add edge, delete edge

- queries
e.g., find a path from source to v,
Is the graph strongly connected?

polylog update time
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Best of both worlds: learning-augmented algorithms (algorithms with predictions)
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best classic worst-case guarantee

algorithm’s cost

optimum

prediction error n
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Learning-augmented algorithms

Input + black-box predictions (possibly inacurate, with some error 1)

A
________________________________________________________________________________ best classic worst-case guarantee
)
Vp)
O
O
K4
= robustness
= smoothness
e
O .
= consistency
< ________________________________________________________________________________________ optimum
.

prediction error 1



Predictions can improve competitive ratio of online algorithms

E.g.: caching [Lykouris, Vassilvitskii, ICML18]

Cache |[AJ[BJ{CJ|~|CAJ(B]J[D][+|CA]J[B](D]

Miss Hit Miss
Accesses ‘D
t = () 1 2

source: arxiv.org/abs/2006.16239

Prediction: When currently requested item will be requested again?

Result: O(min(log k, \/n/OPT))-competitive algorithm  (without predictions ©(log k) is tight)



Predictions can improve running time of static algorithms

E.g.: max weight bipartite matching [Dinitz, Im, Lavastida, Moseley, Vassilvitskii, NeurlPS'21]

Prediction: dual LP solution

Result: O(m+/n - min(+/n,n)) time algorithm
(without predictions O(mn) time Hungarian algorithm often used in practice)



Predictions can improve approximation ratio of
polynomial time approximation algorithms

E.g.: k-means clustering
. , OUR ANALYSIS SHOWS THAT THERE ARE
[Ergun, Feng, Silwal, Woodruff, Zhou, ICLR"22] THREE. KNDS OF PEOPLE N THE \JORLD:

[Gamlath, Lattanzi, Norouzi-Fard, Svensson, COLT'22] THOSE WHO USE K-MEANS CLUSTERING

WITH K=3, AND TWO OTHER TYPES WHOSE
QUALITATIVE INTERPRETATION 1S UNCLEAR.

Prediction: (noisy) clustering | &
Result: (1 + ¢)-approximation algorithm =
(without predictions ©(1) is tight)




https://algorithms-with-predictions.github.io/
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How predictions can improve dynamic algorithms?

+ Let's predict future
- Let's improve running time

Perfect and full knowledge about future = offline dynamic algorithms

Ideal result: With predictions we can do what is (provably) impossible without them

|

OMv

Open problem: Prove a stronger-than-offline lower bound against online dynamic algorithms
under a static hypothesis (e.g., SETH, 3SUM)

\see also [Bringmann, Grgnlund, Kiinnemann, Larsen, ITCS'24]
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Online matrix-vector multiplication hypothesis [HKNS'15]

Input:
- M — Boolean n x n matrix, given offline
- v1,...,V, — Boolean n x 1 vectors, given one by one online

Output: Mvy, Mvs, ..., Mv,

Hypothesis: requires n3—°) time

Does not hold offline — compute M - [vq,...,v,] In O(n®) time



Online matrix-vector multiplication with predictions [this work]
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Input:
- M — Boolean n x n matrix, given offline
- 01,...,0, — predicted vectors, given offline
- v1,...,V, — Boolean n x 1 vectors, given one by one online
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Algorithm:

* Preprocessing in O(n®) time

 Each request in O(nn;) time, n; = ||v; — 0;||1 = ||vs — 0ilo

b

O(nmi)  O(n)

[this work]



Online matrix-vector multiplication with predictions

Input:
- M — Boolean n x n matrix, given offline
- 01,...,0, — predicted vectors, given offline
- v1,...,V, — Boolean n x 1 vectors, given one by one online

Output: Mvy, Mvs, ..., Mv,
over integers!
Algorithm:

* Preprocessing in O(n®) time

 Each request in O(nn;) time, n; = ||v; — 0;||1 = ||vs — 0ilo

b

O(nn;) O(n)
Total time: O(n¥ +nn),n = >, n;

[this work]
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Update: add directed edge (u, v)
Query: Is there a path from a to b?

Upper bound: O(nm) ammortized time (lazily maintain n single-source traversal trees)
Lower bound: n? updates and n? queries require n3—°(1) time, under OMv

Offline = all-pairs bottleneck paths  (O(n{37%)/2) < O(n?%87) time, via min-max matrix product)

Prediction: sequence of insertions.  But, how to handle prediction errors?

k edges “on the side” =— O(k?) query time
t k < f- error of predictions

O(1) query time <= dynamic APBP a b

A
incremental: O(n?)

fully dynamic: O(n?°®)  [via APSP]

<—— QOpen problem: Improve
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Our results for graph problems

Partially dynamic

(edge insertions or deletions)

Prediction: list of updates

- Transitive closure
 Aproximate APSP

Preprocessing O(n?687)
Update O(1)
Query O(n?)

foo prediction error -

Fully dynamic

(edge insertions and deletions)

Prediction: list of operations

- Triangle detection

- Exact matching

» Single-source reachability
- many more...

Preprocessing O(n?373)
Update O(nt37 + nn;)
Query O(nt3" + nn,)

£1 error per operation -

L see also [Henzinger, Saha, Seybold, Ye, ITCS'24]

ﬁ see also [Liu, Srinivas, 2023]

Fully dynamic

(edge insertions and deletions)

Prediction: deletion times
(given during insertions)

- All-pairs shortest paths
(Exact APSP)

Preprcessing  —
Update O(n?)

Query O(n?n;)

£ error per operation -

Thank you!



