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Classic clustering

Given a set of points X ⊆ Rd,
find a set of k centers C that
• k-medians:

minimizes
∑

x∈X

min
c∈C
ℓ1(x , c);

• k-means:

minimizes
∑

x∈X

min
c∈C
ℓ2

2(x , c).

There exist constant factor approximation algorithms.
But how can we explain why a point belongs to a particular cluster?

Explainable clustering [Dasgupta, Frost, Moshkovitz, Rashtchian, ICML’20]

Clustering explained by axis-aligned threshold cuts.

x1 ≤ 0.4

x2 ≤ 0.6

Paths from root to leaf in the threshold tree explain why points belong to a cluster.

Price of explainability: How much more expensive is an explainable clustering?

Previous and concurrent work

k-medians k-means ℓp-norm
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Algorithm for explainable k-medians

1. Start with a non-explainable clustering.

2. Compute bounding box of centers.
L =
∑d

i=1 Li, the sum of all side lengths.

3. Keep sampling random threshold cuts (i,θ )

• i with probability Li/L,
• θ ∈ Li uniformly at random.

In the stream of random cuts, take a cut if it separates some centers,
until a threshold tree is formed, i.e. each center has its own leaf.

The algorithm is oblivious to data points, and runs in time Õ(kd).

Summary and open problems

We have a nearly tight understanding of the price of explainability:

Ω(kp−1) ·OPT ⩽ cost of explainable clustering⩽ O(kp−1 log2 k) ·OPT.

Conjecture. The expected cost of our algorithm for k-medians is at most

(1+Hk−1) ·OPT ⩽ O(log k) ·OPT.

What’s next?

• Generalize the notion of explainability,
e.g., allow in each node hyperplanes in a small number of dimensions.

• Define natural clusterability assumptions
under which the price of explainability is lower.

Analysis of the algorithm

Warm up: two centers
Pr[random cut separates x from its center c(x)]
⩽ ℓ1(x , c(x))/L

E[# of points that get separated]
⩽
∑

x ℓ1(x , c(x))/L = OPT/L

Cost increase for each separated point ⩽ L

⇒ Cost of explainable clustering ⩽ 2OPT

A naive bound for k centers
We may need k−1 cuts to separate k centers ⇒ OPT+(k−1) ·OPT

L · L = k ·OPT

A refined bound for k centers

How many random cuts to separate all centers?

• Let Cmax be the largest distance between two centers, Cmin the smallest

• For a fixed pair of centers at least Cmax/2 apart,

Pr[random cut does not separate them]⩽ 1− Cmax/2L

• Take 100 · (2L/Cmax) · log k successive random cuts

�

1−
Cmax

2L

�100·(2L/Cmax)·log k

⩽
1

k10

⇒ With high probability, all such pairs of centers are separated

How much these cuts cost?

• Cost increase of O(L/Cmax · log k) cuts?

O

�

L
Cmax
· log k

�

·
OPT

L
· Cmax = O(log k) ·OPT

• Going from Cmax→ Cmax/2 increases cost by O(log k) ·OPT

• Repeating O(log(Cmax/Cmin)) times gives

O(log(Cmax/Cmin) · log k) ·OPT

How to get O(log2 k) ·OPT?

• Automatic if Cmax and Cmin are polynomially related

• Otherwise, forbid cuts that separate centers that are too close

• While reducing Cmax→ Cmax/2, forbid separating center pairs closer than Cmax/k
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