
Why is it hard to beat O(n2) for Longest
Common Weakly Increasing Subsequence?

Adam Polak

Longest Common Weakly Increasing Subsequence (LCWIS) – younger brother of classic Longest Common Subsequence (LCS)

Input: Two integer sequences A, B
Output: Sequence C such that

I it is a subsequence of both A and B ,
I it is weakly increasing,
I its length is maximum possible.

Example: A = 124337
B = 143367
LCWIS(A,B) = 4

O(n2) O(n2/ lg n)

O(n2)

Ω(n2−ε)

?

1974 1980

2005

LCS

LCWIS

2015

matching
lower bound

Why is it hard to beat O(n2) for LCWIS?

LCWIS in O(n2−ε) time =⇒ SETH is false
Proof Via reduction from Orthogonal Vectors Problem

Strong Exponential Time Hypothesis (SETH)

CNF-SAT on N variables cannot be solved in O((2− ε)N)

Orthogonal Vectors Problem (OVP)

Input: Two sets U ,V of d -dimensional (0, 1)-vectors, |U | = |V | = n
Output: Is there u ∈ U , v ∈ V such that u · v = 0?

OVP in O(n2−εpoly(d)) time =⇒ SETH is false (Williams, 2005)

Alignment gadget framework

If a problem admits an alignment gadget it cannot be solved in O(n2−ε) unless
SETH fails (Bringmann, Künnemann, 2015)

I Gives lower bounds for LCS, Edit Distance, and many similar problems
I Does not seem to work for LCWIS

Weighted LCWIS

I Auxiliary problem to simplify reduction
I Weight function w : Σ→ N+

I Instead of length, maximize total weight of elements of subsequence
I Equivalent to computing unweighted LCWIS for sequences with each symbol
σ appearing w(σ) times

Coordinate gadgets and vector gadgets

U 3 u = u[1]u[2] . . . u[d] V 3 v = v [1]v [2] . . . v [d]

CG1(0, i) = 〈3i , 3i + 1〉 CG2(0, i) = 〈3i , 3i + 2〉
CG1(1, i) = 〈3i + 2〉 CG2(1, i) = 〈3i + 1〉

LCWIS(CG1(u[i], i),CG2(v [i], i)) =

{
0, if u[i] = 1 and v [i] = 1,

1, otherwise

VG1(u) = CG1(u[1], 1) CG1(u[2], 2) . . . CG1(u[d], d)

VG2(v) = CG2(v [1], 1) CG2(v [2], 2) . . . CG2(v [d], d)

LCWIS(VG1(u),VG2(v)) = d − (u · v)

Gluing vector gadgets together

Four new symbols: A < B < any symbol in VG < Y < Z

w(A) = w(Z) = 2d w(B) = w(Y) = 4d

U = {u1, u2, . . . , un} V = {v1, v2, . . . , vn}

P1 = A2n VG1(u1) YB VG1(u2) YB . . . YB VG1(un) Z2n

P2 = (ZYBA)n VG2(v1) ZYBA VG2(v2) ZYBA . . . ZYBA VG2(vn) (ZYBA)n

WLCWIS(P1,P2) = max
16i ,j6n

d − (ui · vj) + const

Solving OVP for n vectors of dimension d reduced to
finding LCWIS of two sequences of length O(nd)

Alphabet size

I LCS: quadratic time hard even for binary alphabet
I LCWIS: linear time algorithm for 3-letter alphabet

LCWIS: hardness reduction using log n size alphabet
I Open problem: close the gap

Longest Common Increasing Subsequence (LCIS)

I Yet another variant – substitute weakly with strictly in problem definition
I Virtually identical O(n2) algorithm works
I Above reduction does not work
I New, more involved construction required – coming soon!

https://arxiv.org/abs/1703.01143 polak@tcs.uj.edu.pl

