Why is it hard to beat $\mathcal{O}\left(n^{2}\right)$ for Longest Common Weakly Increasing Subsequence?

Adam Polak

Longest Common Weakly Increasing Subsequence (LCWIS) - younger brother of classic Longest Common Subsequence (LCS)

Input: Two integer sequences A, B

Output: Sequence C such that

- it is a subsequence of both A and B,
- it is weakly increasing,
- its length is maximum possible.

Example: $A=124337$
$B=143367$
$\operatorname{LCWIS}(A, B)=4$

	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{2} / \lg n\right)$
$\cdots \cdots \cdots$	1974	1980

LCWIS

Why is it hard to beat $\mathcal{O}\left(n^{2}\right)$ for LCWIS?

LCWIS in $\mathcal{O}\left(n^{2-\varepsilon}\right)$ time \Longrightarrow SETH is false
Proof Via reduction from Orthogonal Vectors Problem

Strong Exponential Time Hypothesis (SETH)

CNF-SAT on N variables cannot be solved in $\mathcal{O}\left((2-\varepsilon)^{N}\right)$

Orthogonal Vectors Problem (OVP)

Input: \quad Two sets U, V of d-dimensional $(0,1)$-vectors, $|U|=|V|=n$
Output: Is there $u \in U, v \in V$ such that $u \cdot v=0$?
OVP in $\mathcal{O}\left(n^{2-\varepsilon}\right.$ poly $\left.(d)\right)$ time \Longrightarrow SETH is false (Williams, 2005)

Alignment gadget framework

If a problem admits an alignment gadget it cannot be solved in $\mathcal{O}\left(n^{2-\varepsilon}\right)$ unless SETH fails (Bringmann, Künnemann, 2015)

- Gives lower bounds for LCS, Edit Distance, and many similar problems
- Does not seem to work for LCWIS

Weighted LCWIS

- Auxiliary problem to simplify reduction
- Weight function $w: \Sigma \rightarrow \mathbb{N}_{+}$
- Instead of length, maximize total weight of elements of subsequence
- Equivalent to computing unweighted LCWIS for sequences with each symbol σ appearing $w(\sigma)$ times

Coordinate gadgets and vector gadgets

$$
\begin{array}{ll}
U \ni u=u[1] u[2] \ldots u[d] & V \ni v=v[1] v[2] \ldots v[d] \\
\mathrm{CG}_{1}(0, i)=\langle 3 i, 3 i+1\rangle & \mathrm{CG}_{2}(0, i)=\langle 3 i, 3 i+2\rangle \\
\mathrm{CG}_{1}(1, i)=\langle 3 i+2\rangle & \mathrm{CG}_{2}(1, i)=\langle 3 i+1\rangle
\end{array}
$$

$\operatorname{LCWIS}\left(\mathrm{CG}_{1}(u[i], i), \mathrm{CG}_{2}(v[i], i)\right)= \begin{cases}0, & \text { if } u[i]=1 \text { and } v[i]=1, \\ 1, & \text { otherwise }\end{cases}$

$$
\begin{array}{lllll}
\mathrm{VG}_{1}(u) & =\mathrm{CG}_{1}(u[1], 1) & \mathrm{CG}_{1}(u[2], 2) & \ldots & \mathrm{CG}_{1}(u[d], d) \\
\operatorname{VG}_{2}(v) & =\mathrm{CG}_{2}(v[1], 1) & \mathrm{CG}_{2}(v[2], 2) & \ldots & \mathrm{CG}_{2}(v[d], d)
\end{array}
$$

$$
\operatorname{LCWIS}\left(\mathrm{VG}_{1}(u), \mathrm{VG}_{2}(v)\right)=d-(u \cdot v)
$$

Gluing vector gadgets together

Four new symbols: $A<B<$ any symbol in $V G<Y<Z$

$$
\begin{array}{cc}
w(\mathrm{~A})=w(\mathrm{Z})=2 d & w(\mathrm{~B})=w(\mathrm{Y})=4 d \\
U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\} & V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}
\end{array}
$$

$$
P_{1}=\quad \mathrm{A}^{2 n} \mathrm{VG}_{1}\left(u_{1}\right) \mathrm{YB} \mathrm{VG}_{1}\left(u_{2}\right) \mathrm{YB} \ldots \mathrm{YB} \mathrm{VG}_{1}\left(u_{n}\right) \mathrm{Z}^{2 n}
$$

$$
P_{2}=(Z Y B A)^{n} \mathrm{VG}_{2}\left(v_{1}\right) \text { ZYBA } \mathrm{VG}_{2}\left(v_{2}\right) \text { ZYBA } \ldots \text { ZYBA } \mathrm{VG}_{2}\left(v_{n}\right)(Z Y B A)^{n}
$$

$$
\operatorname{WLCWIS}\left(P_{1}, P_{2}\right)=\max _{1 \leqslant i, j \leqslant n} d-\left(u_{i} \cdot v_{j}\right)+\text { const }
$$

Solving OVP for n vectors of dimension d reduced to finding LCWIS of two sequences of length $\mathcal{O}(n d)$

Alphabet size

- LCS: quadratic time hard even for binary alphabet
- LCWIS: linear time algorithm for 3-letter alphabet hardness reduction using $\log n$ size alphabet
- Open problem: close the gap

Longest Common Increasing Subsequence (LCIS)

- Yet another variant - substitute weakly with strictly in problem definition
- Virtually identical $\mathcal{O}\left(n^{2}\right)$ algorithm works
- Above reduction does not work
- New, more involved construction required - coming soon!

