Why is it hard to beat O(n?) for Longest
Common Weakly Increasing Subsequence?

Adam Polak

I HEORETICAL
QOMPUTER
JCIENCE

Jagiellonian University

Longest Common Weakly Increasing Subsequence (LCWIS) — younger brother of classic Longest Common Subsequence (LCS)

Input: Two integer sequences A, B
Output: Sequence C such that

» it is a subsequence of both A and B, | CS
» it is weakly increasing, 1974
» its length is maximum possible.

Example: A = 124337
B = 143367
LCWIS(A, B) = 4

Why is it hard to beat O(n?) for LCWIS?

LCWIS in O(n*¢) time = SETH is false
Proof Via reduction from Orthogonal Vectors Problem

Strong Exponential Time Hypothesis (SETH)

CNF-SAT on N variables cannot be solved in O((2 — €)N)

Orthogonal Vectors Problem (OVP)

Input: Two sets U, V of d-dimensional (0, 1)-vectors, |U| = |V| = n
Output: Is there v € U, v € V such that u-v =07

OVP in O(n**poly(d)) time = SETH is false (Williams, 2005)

Alignment gadget framework

If a problem admits an alignment gadget it cannot be solved in O(n°~¢) unless
SETH fails (Bringmann, Kiinnemann, 2015)

» Gives lower bounds for LCS, Edit Distance, and many similar problems
» Does not seem to work for LCWIS

Weighted LCWIS

» Auxiliary problem to simplify reduction
» Weight function w : 2 — N,
» Instead of length, maximize total weight of elements of subsequence

» Equivalent to computing unweighted LCWIS for sequences with each symbol
o appearing w(o) times

Alphabet size

» LCS: quadratic time hard even for binary alphabet

» LCWIS: linear time algorithm for 3-letter alphabet
hardness reduction using log n size alphabet

» Open problem: close the gap

matching
lower bound

Coordinate gadgets and vector gadgets

U> u=ull]ul2]...uld] V > v=yv[l]v[]2]...v][d]

CGl(O I')
CGl(]., I')

(3i,3i + 1)
(3i + 2)

CGy(0, i)
CGy(1, i)

(3i,3i + 2)
(3i + 1)

-

LCWIS(CGy(u[i], i), CGy(v[i], 1))

{o, if ufi] = 1 and v[i] = 1,

1, otherwise

VGy(u) = CGy(u[1], 1) CGy(uf2],2) ... CGy(u[d
VGy(v) = CGy(v[1], 1) CGa(v[2],2) ... CGy(v[d], d)

Q_
Q_
~—r

LCWIS(VGy(u), VGy(v)) = d — (u - v)

Gluing vector gadgets together

Four new symbols: A < B < any symbol in VG <Y < Z
w(A) =w(Z)=2d w(B)=w(Y)=4d

U=A{u,uw,....,ut V=A{wv,v,... v}

P, = A*" VGi(u1) YB VGy(up) YB ... YB VGy(u,) Z°"
P, = (ZYBA)" VGy(v1) ZYBA VGy(vs) ZYBA ... ZYBA VGy(v,) (ZYBA)"

WLCWIS(Py, P,) = max d — (u; - v;) + const

1<ij<n

Solving OVP for n vectors of dimension d reduced to

finding LCWIS of two sequences of length O(nd)

Longest Common Increasing Subsequence (LCIS)

» Yet another variant — substitute weakly with strictly in problem definition
» Virtually identical O(n?) algorithm works

» Above reduction does not work

» New, more involved construction required — coming soon!

https://arxiv.org/abs/1703.01143

polak@tcs.uj.edu.pl

