Mixing Predictions for Online Metric Algorithms

Antonios Antoniadis Christian Coester Marek Eliáš Adam Polak Bertrand Simon

Who do you follow to optimize your outcome?

Blum\&Burch [colt 1997]

You can achieve cost
$\leqslant(1+\varepsilon) \cdot$ single best predictor in hindsight + const
and the diameter of the metric space
Main idea: reduction to online learning with experts
...but what if the best predictor changes over time ...

Our result \#1
You can achieve cost $\leqslant \mathrm{O}\left(\ell^{2}\right) \cdot$ best combination of predictors
\uparrow
optimal in hindsight choice
of a possibly different predictor in each round
Main idea: reduction to Layered Graph Traversal

+ Bubeck-Coester-Rabani LGT algorithm [FOCS 2022]

Our result \#2
You can achieve cost
$\leqslant(1+\varepsilon)^{2} \cdot$ best up-to-M-switches combination + const

$$
\dot{M} \approx \frac{\varepsilon^{2}}{\log \ell} \cdot \frac{\mathrm{OPT}}{\mathrm{diam}}
$$

Main idea: reduction to unfair MTS on uniform metric
$+r$-unfair competitive algorithm of Bartal et al. [STOC 1997]

Our result \#3
With bandit access to predictors, you can achieve cost
$\leqslant^{\wedge}(1+\varepsilon)^{3}$. best up-to-M-switches combination + const
$\dot{M} \approx \frac{\varepsilon^{3}}{\ell \log \ell \log \left(2+\varepsilon^{-1}\right)} \cdot \frac{\mathrm{OPT}}{\mathrm{diam}}$
in each round you have to chose
only one predictor to hear from

Main idea: $\boldsymbol{P}($ explore $)=\boldsymbol{\varepsilon}, \boldsymbol{P}($ exploit $)=1-\boldsymbol{\varepsilon}$

