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You’re solving your favorite online problem. . .
that can be formulated as a Metrical Task System
e.g., k-server, caching, convex body chasing

. . . and there are ` predictors. . .
telling you in each round what action each of them would take.

Think of, e.g., trained machine-learning models,
or a classical algorithm with worst-case guarantees.

Who do you follow to optimize your outcome?

Blum&Burch [COLT 1997]

Our result #1

You can achieve cost
6 (1 + ε) · single best predictor in hindsight + const

depends on ε

and the diameter of the metric space

Main idea: reduction to online learning with experts

You can achieve cost 6 O(`2) · best combination of predictors

optimal in hindsight choice
of a possibly di�erent predictor in each round

Our result #2
You can achieve cost

6 (1 + ε)2 · best up-to-M-switches combination + const

M ≈ ε2

log `
· OPT
diam

Main idea: reduction to unfair MTS on uniform metric
+ r-unfair competitive algorithm of Bartal et al. [STOC 1997]

Our result #3
With bandit access to predictors, you can achieve cost

6 (1 + ε)3 · best up-to-M-switches combination + const

M ≈ ε3

` log ` log (2+ε−1)
· OPT
diam

in each round you have to chose
only one predictor to hear from

Main idea: P (explore) = ε, P (exploit) = 1− ε

time

cost

Main idea: reduction to Layered Graph Traversal
+ Bubeck-Coester-Rabani LGT algorithm [FOCS 2022]

. . . but what if the best predictor changes over time . . .


