

Christian Coester Antonios Antoniadis Marek Eliáš

You're solving your favorite online problem...

that can be formulated as a Metrical Task System e.g., k-server, caching, convex body chasing

You can achieve cost

...and there are ℓ predictors...

telling you in each round what action each of them would take.

Think of, e.g., trained machine-learning models, or a classical algorithm with worst-case guarantees.

UNIVERSITY

OF TWENTE.

Blum&Burch [COLT 1997]

 \leq (1 + ε) · single best predictor in hindsight + const

depends on ϵ and the diameter of the metric space

Main idea: reduction to online learning with experts

Mixing Predictions for Online Metric Algorithms

Who do you follow to optimize your outcome?

... but what if the best predictor changes over time ...

UNIVERSITY OF OXFORD Bocconi max planck institut informatik

Adam Polak

Bertrand Simon

Our result #1

optimal in hindsight choice of a possibly different predictor in each round

Main idea: reduction to Layered Graph Traversal

Our result #2

You can achieve cost

Main idea: reduction to unfair MTS on uniform metric

Our result #3

With bandit access to predictors, you can achieve cost

in each round you have to chose only one predictor to hear from

Main idea: $P(explore) = \varepsilon$, $P(exploit) = 1 - \varepsilon$

You can achieve cost $\leq O(\ell^2) \cdot \text{best combination of predictors}$

+ Bubeck-Coester-Rabani LGT algorithm [FOCS 2022]

$\leq (1 + \varepsilon)^2 \cdot \text{best up-to-M-switches combination} + \text{const}$

 $\dot{\mathsf{M}} \approx rac{arepsilon^2}{\log \ell} \cdot rac{\mathsf{OPT}}{\mathsf{diam}}$

+ r-unfair competitive algorithm of Bartal et al. [STOC 1997]

$\leq (1 + \varepsilon)^3 \cdot \text{best up-to-M-switches combination} + \text{const}$

 $\mathsf{M} pprox rac{arepsilon^2}{\ell \log \ell \log \left(2 + arepsilon^{-1}
ight)} \cdot rac{\mathsf{OPI}}{\mathsf{diam}}$

