Monochromatic Triangles Intermediate Matrix Products and Convolutions

Andrea Lincoln Adam Polak Virginia Vassilevska Williams

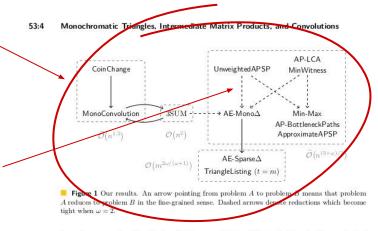
matrix multiplication
$$C_{ij} = \Sigma_k A_{ik} \times B_{kj}$$
 $O(n^2)^*$ $(min,+)$ -product $C_{ij} = \min_k A_{ik} + B_{kj}$ $O(n^3)$ (min,max) -product $C_{ij} = \min_k \max(A_{ik}, B_{kj})$ $O(n^{2.5})^*$ Hamming product $C_{ij} = \Sigma_k \mathbf{1}[A_{ik} = B_{kj}]$ $O(n^{2.5})^*$ APSP in unweighted directed graphs $O(n^{2.5})^*$...coincidence?

our results: bunch of fine-grained reductions between intermediate problems

e.g.: APSP in unweighted directed graphs

is no harder than

finding monochromatic triangles in edge-colored graphs



have the same color. Vassilevska, Williams and Yuster [40] studied the decision variant of AE-Mono Δ in which one asks whether the given graph contains a monochromatic triangle. They provided an $\mathcal{O}(n^{(3+\omega)/2})$ time algorithm for the decision problem, but that algorithm is in fact strong enough to also solve the all-edges variant AE-Mono Δ , making AE-Mono Δ one of the "intermediate" problems of interest.

To obtain their $O(n^{(3+\omega)/2})$ time algorithm, Vassilevska, Williams and Yuster [40] implicitly reduce AE-Mono Δ (in a black-box way) to the AE-Sparse Δ problem of deciding for every edge e in an m-edge graph whether e is in a triangle. The fastest known algorithm for AE-Sparse Δ is by Alon, Yuster and Zwick [3], running in $O(m^{2\omega/(\omega+1)})$ time, and the problem is known to be runtime equivalent to the problem of *listing* up to m triangles in an m-edge graph [20]. The black-box reduction of [40] from AE-Mono Δ to AE-Sparse Δ implies that a significant improvement over $O(m^{2\omega/(\omega+1)})$ time for AE-Sparse Δ would translate to an improvement over $O(n^{(3+\omega)/2})$ for AE-Mono Δ .

► Theorem 1 (implicit in [40]). If AE-Sparse∆ is in O(m^{2ω/(ω+1)-ε}) time, for some ε > 0, then AE-Mono∆ is in O(n^{(3+ω)/2-δ}) time, for some δ > 0.

