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often not tight lower bounds



Can we have tight lower bounds for dynamic problems
based on a hypothesis that is more believable than OMv?



Input:
Boolean 𝑛× 𝑛 matrix 𝑨,
and 𝑛 Boolean vectors 𝒗1, 𝒗2, . . . , 𝒗𝒏 given online

Output:
Boolean products 𝑴𝒗1, 𝑴𝒗2, . . . , 𝑴𝒗𝒏
must output 𝑴𝒗𝒊 before being able to see 𝒗𝒊+1

(Boolean) Online Matrix-vector multiplication (OMv)
[Henzinger–Krinninger–Nanongkai–Saranurak, STOC’15]
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▶ Bounded monotone
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Can we give tight reductions
from Min-Max-OMv to those dynamic problems

that have known tight reductions from (Boolean-)OMv?
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∃Equal.-OMv∃Dom.-OMv

BD-Min-Plus-OMv

Min-Wit.-OMv



▶ Boolean-OMv; (∃𝑘 𝑀[𝑖, 𝑘] ∧ 𝑣[𝑘])

▶ ∃Equality-OMv; (∃𝑘 𝑀[𝑖, 𝑘] = 𝑣[𝑘])

▶ ∃Dominance-OMv; (∃𝑘 𝑀[𝑖, 𝑘] ⩽ 𝑣[𝑘])

▶ Min-Witness-OMv; (min {𝑘 | 𝑀[𝑖, 𝑘] ∧ 𝑣[𝑘]})

▶ Min-Max-OMv; (min𝑘 max{𝑀[𝑖, 𝑘], 𝑣[𝑘]})

▶ Bounded Monotone Min-Plus-OMv. (min𝑘 𝑀[𝑖, 𝑘] + 𝑣[𝑘])

Our theorem
These problems either all have truly subcubic algorithms or none of them have:



▶ Boolean-OMv; (∃𝑘 𝑀[𝑖, 𝑘] ∧ 𝑣[𝑘])

▶ ∃Equality-OMv; (∃𝑘 𝑀[𝑖, 𝑘] = 𝑣[𝑘])

▶ ∃Dominance-OMv; (∃𝑘 𝑀[𝑖, 𝑘] ⩽ 𝑣[𝑘])

▶ Min-Witness-OMv; (min {𝑘 | 𝑀[𝑖, 𝑘] ∧ 𝑣[𝑘]})

▶ Min-Max-OMv; (min𝑘 max{𝑀[𝑖, 𝑘], 𝑣[𝑘]})

▶ Bounded Monotone Min-Plus-OMv. (min𝑘 𝑀[𝑖, 𝑘] + 𝑣[𝑘])

Our theorem
These problems either all have truly subcubic algorithms or none of them have:

Surprise? Not in hindsight.

Known static algorithms
in time 𝑂

(
𝑛

3+𝜔
2
)

i.e. 𝑂(𝑛𝑓 (𝜔) ) s.t.
𝑥 < 3 =⇒ 𝑓 (𝑥) < 3



▶ Boolean-OMv; (∃𝑘 𝑀[𝑖, 𝑘] ∧ 𝑣[𝑘])

▶ ∃Equality-OMv; (∃𝑘 𝑀[𝑖, 𝑘] = 𝑣[𝑘])

▶ ∃Dominance-OMv; (∃𝑘 𝑀[𝑖, 𝑘] ⩽ 𝑣[𝑘])

▶ Min-Witness-OMv; (min {𝑘 | 𝑀[𝑖, 𝑘] ∧ 𝑣[𝑘]})

▶ Min-Max-OMv; (min𝑘 max{𝑀[𝑖, 𝑘], 𝑣[𝑘]})

▶ Bounded Monotone Min-Plus-OMv. (min𝑘 𝑀[𝑖, 𝑘] + 𝑣[𝑘])

Our theorem
These problems either all have truly subcubic algorithms or none of them have:

Surprise? Not in hindsight.

Known static algorithms
in time 𝑂

(
𝑛

3+𝜔
2
)

i.e. 𝑂(𝑛𝑓 (𝜔) ) s.t.
𝑥 < 3 =⇒ 𝑓 (𝑥) < 3

Remark: If (static) BMM has a subcubic combinatorial algorithm,
then all these variants have such algorithms as well.



▶ Boolean-OMv; (∃𝑘 𝑀[𝑖, 𝑘] ∧ 𝑣[𝑘])

▶ ∃Equality-OMv; (∃𝑘 𝑀[𝑖, 𝑘] = 𝑣[𝑘])

▶ ∃Dominance-OMv; (∃𝑘 𝑀[𝑖, 𝑘] ⩽ 𝑣[𝑘])

▶ Min-Witness-OMv; (min {𝑘 | 𝑀[𝑖, 𝑘] ∧ 𝑣[𝑘]})

▶ Min-Max-OMv; (min𝑘 max{𝑀[𝑖, 𝑘], 𝑣[𝑘]})

▶ Bounded Monotone Min-Plus-OMv. (min𝑘 𝑀[𝑖, 𝑘] + 𝑣[𝑘])

Our theorem
These problems either all have truly subcubic algorithms or none of them have:

Surprise? Not in hindsight.

Known static algorithms
in time 𝑂

(
𝑛

3+𝜔
2
)

i.e. 𝑂(𝑛𝑓 (𝜔) ) s.t.
𝑥 < 3 =⇒ 𝑓 (𝑥) < 3

Remark: If (static) BMM has a subcubic combinatorial algorithm,
then all these variants have such algorithms as well.

Open problem: Add a counting variant to the list.
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