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Can we have tight lower bounds for dynamic problems
based on a hypothesis that is more believable than OMv?



(Boolean) Online Matrix-vector multiplication (OMv)

[Henzinger-Krinninger-Nanongkai-Saranurak, STOC'15]

Input:
Boolean n X n matrix A,
and n Boolean vectors vq, va, ..., V, given online

Output:
Boolean products Mvq, Mv,, ..., Mv,
must output Mv; before being able to see v;, 4



(Boolean) Online Matrix-vector multiplication (OMv)

[Henzinger-Krinninger-Nanongkai-Saranurak, STOC'15]

Input:

Boolean n X n matrix A,

and n Boolean vectors vq, va, ..., V, given online
Output:

Boolean products Mvq, Mv,, ..., Mv,

must output Mv; before being able to see v;, 4

OMv Hypothesis: No 0 (n3~¢) time algorithm for OMv
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(MQV)[i] := min; max(M[i][j],v]j])
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must output MQv; before being able to see v;,1
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Min-Max Online Matrix-vector multiplication

(MQV)[i] := min; max(M[i][j],v]j])

Input:
Integer n X n matrix A,
and n integer vectors vq, V2, ..., V, given online

Output:
Min-Max products MQvqy, MQVa, ..., MQV,
must output MQv; before being able to see v;,1

Min-Max-OMv Hypothesis: No 0 (n3~¢) time algorithm for Min-Max-OMv

a priori more believable than (Boolean-)OMv Hypothesis



Can we give tight reductions
from Min-Max-OMyv to those dynamic problems
that have known tight reductions from (Boolean-)OMv?
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Our theorem

These problems either all have truly subcubic algorithms or none of them have:

» Boolean-OMvy; (I M[i, k] Av]k])
» JEquality-OMv; (Fk Mi, k] = v[k])
» JDominance-OMv; (3 M[i, k] < v[k])
» Min-Witness-OMy; (min{k | M[i,k] Av[k]})
» Min-Max-OMv; (ming max{M|[i,k],v[k]})

» Bounded Monotone Min-Plus-OMv. (ming M[i, k] +v|[k])
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Open problem: Add a counting variant to the list.

Our theorem
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