
How to plant Orthogonal Vectors?

David Kühnemann

Adam Polak

Alon Rosen

no orthogonal vectors (w.h.p.)

▶ I know where the orthogonal vectors are;

▶ but you don’t
. . .unless you spend 𝒏2 time to find them;

▶ construction has some nice properties.

Why study planted problems?

Interesting theory

Fine-grained cryptography

Why study planted problems?

Interesting theory

Fine-grained cryptography

Cryptographers: “Give us a problem for which we can
efficiently generate hard instances with known solutions,
like integer factorization, discrete logairthm, k-SUM, Zero-k-Clique.”

Why study fine-grained cryptography?

Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

▶ Reality: “If you break my cipher in poly(𝑛) time,
then discrete logarithm can be solved in poly(𝑛) time”

Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

▶ Reality: “If you break my cipher in poly(𝑛) time,
then discrete logarithm can be solved in poly(𝑛) time”

▶ Peter Shor: “Give me a decently-sized quantum computer,
and I’ll solve discrete logarithm in poly(𝑛) time”

Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

▶ Reality: “If you break my cipher in poly(𝑛) time,
then discrete logarithm can be solved in poly(𝑛) time”

▶ Peter Shor: “Give me a decently-sized quantum computer,
and I’ll solve discrete logarithm in poly(𝑛) time”

▶ Fine-grained dream: “If you break my cipher in 𝒏99 time,
then Zero-100-Clique Conjecture fails”

Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

▶ Reality: “If you break my cipher in poly(𝑛) time,
then discrete logarithm can be solved in poly(𝑛) time”

▶ Peter Shor: “Give me a decently-sized quantum computer,
and I’ll solve discrete logarithm in poly(𝑛) time”

▶ Fine-grained dream: “If you break my cipher in 𝒏99 time,
then Zero-100-Clique Conjecture fails”

▶ LaVigne–Lincoln–Vassilevska Williams: “If you break my cipher in 𝒏1.99 time,
then Average-Case Zero-100-Clique Conjecture fails”

Orthogonal Vectors
Input: Two sets 𝑼,𝑽 ⊆ {0, 1}𝒅 of 𝒏 binary vectors of dimension 𝒅

Output: Do there exist 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 such that 𝒖 ⊥ 𝒗?

Orthogonal Vectors
Input: Two sets 𝑼,𝑽 ⊆ {0, 1}𝒅 of 𝒏 binary vectors of dimension 𝒅

Output: Do there exist 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 such that 𝒖 ⊥ 𝒗?

∀𝑖∈[𝑑] 𝑢[𝑖] = 0 ∨ 𝑣[𝑖] = 0

Orthogonal Vectors
Input: Two sets 𝑼,𝑽 ⊆ {0, 1}𝒅 of 𝒏 binary vectors of dimension 𝒅

Output: Do there exist 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 such that 𝒖 ⊥ 𝒗?

∀𝑖∈[𝑑] 𝑢[𝑖] = 0 ∨ 𝑣[𝑖] = 0
Worst-case complexity:
▶ Naive: 𝑶(𝒏2𝒅)
▶ Polynomial method: 𝑶(𝒏2−1/log 𝒄) for 𝒅 = 𝒄 log𝒏 [Abboud–Williams–Yu 2014]

[Chan–Williams 2016]
▶ Under SETH, requires time 𝒏2−𝒐(1) for 𝑑 = 𝜔(log 𝑛) [Williams 2005]

Orthogonal Vectors
Input: Two sets 𝑼,𝑽 ⊆ {0, 1}𝒅 of 𝒏 binary vectors of dimension 𝒅

Output: Do there exist 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 such that 𝒖 ⊥ 𝒗?

∀𝑖∈[𝑑] 𝑢[𝑖] = 0 ∨ 𝑣[𝑖] = 0
Worst-case complexity:
▶ Naive: 𝑶(𝒏2𝒅)
▶ Polynomial method: 𝑶(𝒏2−1/log 𝒄) for 𝒅 = 𝒄 log𝒏 [Abboud–Williams–Yu 2014]

[Chan–Williams 2016]
▶ Under SETH, requires time 𝒏2−𝒐(1) for 𝑑 = 𝜔(log 𝑛) [Williams 2005]

Average-case complexity (i.i.d. 𝑝-biased vector entries, 𝑑 = 𝑐 log 𝑛, 𝑝 = Θ(1/
√
𝑐))

▶ Just look for sparse vectors: 𝑶(𝒏2−1/log 𝒄) [Kane–Williams 2019]
▶ Polynomial method: 𝑶(𝒏2−log log 𝒄/log 𝒄) [Alman–Andoni–Zhang 2025]

Orthogonal Vectors
Input: Two sets 𝑼,𝑽 ⊆ {0, 1}𝒅 of 𝒏 binary vectors of dimension 𝒅

Output: Do there exist 𝑢 ∈ 𝑈, 𝑣 ∈ 𝑉 such that 𝒖 ⊥ 𝒗?

∀𝑖∈[𝑑] 𝑢[𝑖] = 0 ∨ 𝑣[𝑖] = 0
Worst-case complexity:
▶ Naive: 𝑶(𝒏2𝒅)
▶ Polynomial method: 𝑶(𝒏2−1/log 𝒄) for 𝒅 = 𝒄 log𝒏 [Abboud–Williams–Yu 2014]

[Chan–Williams 2016]
▶ Under SETH, requires time 𝒏2−𝒐(1) for 𝑑 = 𝜔(log 𝑛) [Williams 2005]

Average-case complexity (i.i.d. 𝑝-biased vector entries, 𝑑 = 𝑐 log 𝑛, 𝑝 = Θ(1/
√
𝑐))

▶ Just look for sparse vectors: 𝑶(𝒏2−1/log 𝒄) [Kane–Williams 2019]
▶ Polynomial method: 𝑶(𝒏2−log log 𝒄/log 𝒄) [Alman–Andoni–Zhang 2025]

Two

2-Orthogonal Vectors

k-Orthogonal Vectors
Input: 𝒌 sets 𝑼1,𝑼2, . . . ,𝑼𝒌 ⊆ {0, 1}𝒅 of 𝒏 binary vectors of dimension 𝒅

Output: Do there exist 𝒖1 ∈ 𝑼1, 𝒖2 ∈ 𝑼2, . . . , 𝒖𝒌 ∈ 𝑼𝒌 such that

∀𝒊∈[𝒅] 𝒖1[𝒊] = 0 ∨ 𝒖2[𝒊] = 0 ∨ · · · ∨ 𝒖𝒌[𝒊] = 0?
Worst-case complexity:
▶ Naive: 𝑶(𝒏𝒌𝒅)
▶ Polynomial method: 𝑶(𝒏𝒌−1/log 𝒄) for 𝒅 = 𝒄 log𝒏 [Abboud–Williams–Yu 2014]

[Chan–Williams 2016]
▶ Under SETH, requires time 𝒏𝒌−𝒐(1) for 𝑑 = 𝜔(log 𝑛) [Williams 2005]

How to plant orthogonal vectors

so that they are hard to find?

The Planted k-Orthogonal Vectors Problem

Model distribution: i.i.d. 𝒑-biased entries

The Planted k-Orthogonal Vectors Problem

Model distribution: i.i.d. 𝒑-biased entries

▶ 𝑑 = 𝜔(log 𝑛) (otherwise polynomial method works in subquadratic time)

▶ 𝒑 = Ω

(
𝑘

√︃
log 𝑛
𝑑

)
(guarantees NO-instance w.h.p.)

▶ 𝒑 ⩽ 1
2 (technical detail required later, w.l.o.g. for large enough 𝑛)

The Planted k-Orthogonal Vectors Problem

Model distribution: i.i.d. 𝒑-biased entries

▶ 𝑑 = 𝜔(log 𝑛) (otherwise polynomial method works in subquadratic time)

▶ 𝒑 = Ω

(
𝑘

√︃
log 𝑛
𝑑

)
(guarantees NO-instance w.h.p.)

▶ 𝒑 ⩽ 1
2 (technical detail required later, w.l.o.g. for large enough 𝑛)

Planted distribution: any 𝑘′ ⩽ 𝑘 − 1 vectors have model marginal distribution

“(k-1)-wise independence”; trivial, e.g., in k-SUM

How to generate k orthogonal vectors to plant?

For each coordinate independently, pick #ones according to

Pr[#ones = 𝒎] =
(
𝑘

𝒎

)
·
(
𝑝𝒎 · (1 − 𝑝)𝑘−𝒎 − (−1)𝑘−𝒎 · 𝑝𝑘

)
and pick locations of 𝒎 ones uniformly at random from

(𝑘
𝒎

)
options.

How to generate k orthogonal vectors to plant?

For each coordinate independently, pick #ones according to

Pr[#ones = 𝒎] =
(
𝑘

𝒎

)
·
(
𝑝𝒎 · (1 − 𝑝)𝑘−𝒎 − (−1)𝑘−𝒎 · 𝑝𝑘

)
and pick locations of 𝒎 ones uniformly at random from

(𝑘
𝒎

)
options.

Needs 𝑝 ⩽ 1/2

How to generate k orthogonal vectors to plant?

For each coordinate independently, pick #ones according to

Pr[#ones = 𝒎] =
(
𝑘

𝒎

)
·
(
𝑝𝒎 · (1 − 𝑝)𝑘−𝒎 − (−1)𝑘−𝒎 · 𝑝𝑘

)
and pick locations of 𝒎 ones uniformly at random from

(𝑘
𝒎

)
options.

Needs 𝑝 ⩽ 1/2

Example (𝒌 = 2):

Pr[00] = 1 − 2𝑝 Pr[01] = 𝑝 Pr[10] = 𝑝 Pr[11] = 0

How to generate k orthogonal vectors to plant?

For each coordinate independently, pick #ones according to

Pr[#ones = 𝒎] =
(
𝑘

𝒎

)
·
(
𝑝𝒎 · (1 − 𝑝)𝑘−𝒎 − (−1)𝑘−𝒎 · 𝑝𝑘

)
and pick locations of 𝒎 ones uniformly at random from

(𝑘
𝒎

)
options.

Claim: For any 𝒌 − 1 out of those 𝑘 vectors, for any coordinate, we have

Pr[#ones = ℓ] =
(
𝑘 − 1
ℓ

)
· 𝑝ℓ · (1 − 𝑝)𝑘−1−ℓ

Needs 𝑝 ⩽ 1/2

How to generate k orthogonal vectors to plant?

For each coordinate independently, pick #ones according to

Pr[#ones = 𝒎] =
(
𝑘

𝒎

)
·
(
𝑝𝒎 · (1 − 𝑝)𝑘−𝒎 − (−1)𝑘−𝒎 · 𝑝𝑘

)
and pick locations of 𝒎 ones uniformly at random from

(𝑘
𝒎

)
options.

Claim: For any 𝒌 − 1 out of those 𝑘 vectors, for any coordinate, we have

Pr[#ones = ℓ] =
(
𝑘 − 1
ℓ

)
· 𝑝ℓ · (1 − 𝑝)𝑘−1−ℓ

Needs 𝑝 ⩽ 1/2

Same as 𝑘 − 1 i.i.d. 𝑝-biased entries

How to generate k orthogonal vectors to plant?

For each coordinate independently, pick #ones according to

Pr[#ones = 𝒎] =
(
𝑘

𝒎

)
·
(
𝑝𝒎 · (1 − 𝑝)𝑘−𝒎 − (−1)𝑘−𝒎 · 𝑝𝑘

)
and pick locations of 𝒎 ones uniformly at random from

(𝑘
𝒎

)
options.

Claim: For any 𝒌 − 1 out of those 𝑘 vectors, for any coordinate, we have

Pr[#ones = ℓ] =
(
𝑘 − 1
ℓ

)
· 𝑝ℓ · (1 − 𝑝)𝑘−1−ℓ

Proof: Just do the math.

Needs 𝑝 ⩽ 1/2

Same as 𝑘 − 1 i.i.d. 𝑝-biased entries

How to generate k orthogonal vectors to plant?

conveniently

▶ Generate 𝒌 − 1 i.i.d. 𝑝-biased vectors 𝑢1, 𝑢2, . . . , 𝑢𝑘−1

▶ For each coordinate 𝑖 ∈ [𝑑]

▶ ℓ := 𝑢1 [𝑖] + 𝑢2 [𝑖] + · · · + 𝑢𝑘−1 [𝑖]

▶ Set 𝑢𝑘 [𝑖] :=

{
1 with probability 𝑝 ·

(
1 − (−𝑝

1−𝑝)
𝑘−1−ℓ)

0 otherwise

#ones among first 𝑘 − 1 vectors

How to generate k orthogonal vectors to plant?

conveniently

▶ Generate 𝒌 − 1 i.i.d. 𝑝-biased vectors 𝑢1, 𝑢2, . . . , 𝑢𝑘−1

▶ For each coordinate 𝑖 ∈ [𝑑]

▶ ℓ := 𝑢1 [𝑖] + 𝑢2 [𝑖] + · · · + 𝑢𝑘−1 [𝑖]

▶ Set 𝑢𝑘 [𝑖] :=

{
1 with probability 𝑝 ·

(
1 − (−𝑝

1−𝑝)
𝑘−1−ℓ)

0 otherwise

Claim: Same distribtution as the previous slide.

#ones among first 𝑘 − 1 vectors

How to generate k orthogonal vectors to plant?

conveniently

▶ Generate 𝒌 − 1 i.i.d. 𝑝-biased vectors 𝑢1, 𝑢2, . . . , 𝑢𝑘−1

▶ For each coordinate 𝑖 ∈ [𝑑]

▶ ℓ := 𝑢1 [𝑖] + 𝑢2 [𝑖] + · · · + 𝑢𝑘−1 [𝑖]

▶ Set 𝑢𝑘 [𝑖] :=

{
1 with probability 𝑝 ·

(
1 − (−𝑝

1−𝑝)
𝑘−1−ℓ)

0 otherwise

Claim: Same distribtution as the previous slide. Proof: Just do the math.

#ones among first 𝑘 − 1 vectors

Search-to-decision reduction

A decision algorithm gets an instance drawn either from the model distribution
or the planted distribution and outputs which one it was

A search algorithm gets an instance drawn from the planted distribution and
outputs indices of the planted vectors

Theorem: If there is a 𝑇 (𝑛)-time decision algorithm for k-OV with success
probability 1 − 𝑝(𝑛), then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for
k-OV with success probability 1 − 𝑘 log(𝑛)𝑝(𝑛)

Search-to-decision reduction

Key idea:

▶ Replace some vectors in the input instance with i.i.d. 𝑝-biased vectors

▶ If none of the planted vectors got replaced, the instance is distributed
according to the planted dsitribution

▶ If at least one planted vector got replaced, the instance is distributed
according to the model dsitribution

Search-to-decision reduction

Key idea:

▶ Replace some vectors in the input instance with i.i.d. 𝑝-biased vectors

▶ If none of the planted vectors got replaced, the instance is distributed
according to the planted dsitribution

▶ If at least one planted vector got replaced, the instance is distributed
according to the model dsitribution

Thanks to (k-1)-wise independence

Search-to-decision reduction

Key idea:

▶ Replace some vectors in the input instance with i.i.d. 𝑝-biased vectors

▶ If none of the planted vectors got replaced, the instance is distributed
according to the planted dsitribution

▶ If at least one planted vector got replaced, the instance is distributed
according to the model dsitribution

Thanks to (k-1)-wise independence

Reduction: Use the key idea to implement binary search

A different search-to-decision reduction

Theorem [Agrawal et al., CRYPTO’24]
For every 𝛿 > 0 there exists 𝜖 > 0 such that
if there is a 𝑇 (𝑛)-time decision algorithm for k-SUM with success probability 1− 𝜖,
then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for k-SUM with success
probability 1 − 𝛿

A different search-to-decision reduction

Theorem [Agrawal et al., CRYPTO’24]
For every 𝛿 > 0 there exists 𝜖 > 0 such that
if there is a 𝑇 (𝑛)-time decision algorithm for k-SUM with success probability 1− 𝜖,
then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for k-SUM with success
probability 1 − 𝛿

Theorem [this work]
For every 𝛿 > 0 there exists 𝜖 > 0 such that
if there is a 𝑇 (𝑛)-time decision algorithm for k-OV with success probability 1 − 𝜖,
then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for k-OV with success
probability 1 − 𝛿

A different search-to-decision reduction

Theorem: For every 𝛿 > 0 there exists 𝜖 > 0 such that [this work]
if there is a 𝑇 (𝑛)-time decision algorithm for k-OV with success probability 1 − 𝜖,
then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for k-OV with success
probability 1 − 𝛿

A different search-to-decision reduction

Theorem: For every 𝛿 > 0 there exists 𝜖 > 0 such that [this work]
if there is a 𝑇 (𝑛)-time decision algorithm for k-OV with success probability 1 − 𝜖,
then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for k-OV with success
probability 1 − 𝛿

Search algorithm:
▶ Create a counter for each vector, initially set to 0
▶ Repeat 𝑂(log 𝑛) times:
▶ Replace a random 1 − 𝑘

√︁
1/2 fraction of vectors with freshly sampled ones

▶ If the decision algorithm says planted, increment counters of non-replaced
▶ Return the 𝑘 vectors with highest counters

A different search-to-decision reduction

Theorem: For every 𝛿 > 0 there exists 𝜖 > 0 such that [this work]
if there is a 𝑇 (𝑛)-time decision algorithm for k-OV with success probability 1 − 𝜖,
then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for k-OV with success
probability 1 − 𝛿

Search algorithm:
▶ Create a counter for each vector, initially set to 0
▶ Repeat 𝑂(log 𝑛) times:
▶ Replace a random 1 − 𝑘

√︁
1/2 fraction of vectors with freshly sampled ones

▶ If the decision algorithm says planted, increment counters of non-replaced
▶ Return the 𝑘 vectors with highest counters

Proof of correctness: “Just” do the math (∼3 pages of math)

Summary

▶ We show how to sample 𝑘 orthogonal vectors so that
any 𝑘 − 1 of them look like i.i.d. 𝑝-biased vectors

▶ We conjecture it takes time 𝑛𝑘−𝑜(1) to find them among i.i.d. 𝑝-biased vectors

Summary

▶ We show how to sample 𝑘 orthogonal vectors so that
any 𝑘 − 1 of them look like i.i.d. 𝑝-biased vectors

▶ We conjecture it takes time 𝑛𝑘−𝑜(1) to find them among i.i.d. 𝑝-biased vectors

Open problems

▶ Build public-key cryptography based on hardness of 𝑘-OV

▶ Show hardness amplification, or a worst-case to average-case reduction

▶ Refute our conjecture

thank you!

Summary

▶ We show how to sample 𝑘 orthogonal vectors so that
any 𝑘 − 1 of them look like i.i.d. 𝑝-biased vectors

▶ We conjecture it takes time 𝑛𝑘−𝑜(1) to find them among i.i.d. 𝑝-biased vectors

Open problems

▶ Build public-key cryptography based on hardness of 𝑘-OV

▶ Show hardness amplification, or a worst-case to average-case reduction

▶ Refute our conjecture

