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▶ I know where the orthogonal vectors are;

▶ but you don’t
. . .unless you spend 𝒏2 time to find them;

▶ construction has some nice properties.
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Interesting theory

Fine-grained cryptography



Why study planted problems?

Interesting theory

Fine-grained cryptography

Cryptographers: “Give us a problem for which we can
efficiently generate hard instances with known solutions,
like integer factorization, discrete logairthm, k-SUM, Zero-k-Clique.”



Why study fine-grained cryptography?



Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”



Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

▶ Reality: “If you break my cipher in poly(𝑛) time,
then discrete logarithm can be solved in poly(𝑛) time”



Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

▶ Reality: “If you break my cipher in poly(𝑛) time,
then discrete logarithm can be solved in poly(𝑛) time”

▶ Peter Shor: “Give me a decently-sized quantum computer,
and I’ll solve discrete logarithm in poly(𝑛) time”



Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

▶ Reality: “If you break my cipher in poly(𝑛) time,
then discrete logarithm can be solved in poly(𝑛) time”

▶ Peter Shor: “Give me a decently-sized quantum computer,
and I’ll solve discrete logarithm in poly(𝑛) time”

▶ Fine-grained dream: “If you break my cipher in 𝒏99 time,
then Zero-100-Clique Conjecture fails”



Why study fine-grained cryptography?
▶ Dream: “If you break my cipher in poly(𝑛) time, then P=NP”

▶ Reality: “If you break my cipher in poly(𝑛) time,
then discrete logarithm can be solved in poly(𝑛) time”

▶ Peter Shor: “Give me a decently-sized quantum computer,
and I’ll solve discrete logarithm in poly(𝑛) time”

▶ Fine-grained dream: “If you break my cipher in 𝒏99 time,
then Zero-100-Clique Conjecture fails”

▶ LaVigne–Lincoln–Vassilevska Williams: “If you break my cipher in 𝒏1.99 time,
then Average-Case Zero-100-Clique Conjecture fails”
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[Chan–Williams 2016]
▶ Under SETH, requires time 𝒏2−𝒐(1) for 𝑑 = 𝜔(log 𝑛) [Williams 2005]
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2-Orthogonal Vectors



k-Orthogonal Vectors
Input: 𝒌 sets 𝑼1,𝑼2, . . . ,𝑼𝒌 ⊆ {0, 1}𝒅 of 𝒏 binary vectors of dimension 𝒅

Output: Do there exist 𝒖1 ∈ 𝑼1, 𝒖2 ∈ 𝑼2, . . . , 𝒖𝒌 ∈ 𝑼𝒌 such that

∀𝒊∈[𝒅] 𝒖1[𝒊] = 0 ∨ 𝒖2[𝒊] = 0 ∨ · · · ∨ 𝒖𝒌[𝒊] = 0?
Worst-case complexity:
▶ Naive: 𝑶(𝒏𝒌𝒅)
▶ Polynomial method: 𝑶(𝒏𝒌−1/log 𝒄) for 𝒅 = 𝒄 log𝒏 [Abboud–Williams–Yu 2014]

[Chan–Williams 2016]
▶ Under SETH, requires time 𝒏𝒌−𝒐(1) for 𝑑 = 𝜔(log 𝑛) [Williams 2005]



How to plant orthogonal vectors

so that they are hard to find?
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Model distribution: i.i.d. 𝒑-biased entries

▶ 𝑑 = 𝜔(log 𝑛) (otherwise polynomial method works in subquadratic time)

▶ 𝒑 = Ω

(
𝑘

√︃
log 𝑛
𝑑

)
(guarantees NO-instance w.h.p.)

▶ 𝒑 ⩽ 1
2 (technical detail required later, w.l.o.g. for large enough 𝑛)

Planted distribution: any 𝑘′ ⩽ 𝑘 − 1 vectors have model marginal distribution

“(k-1)-wise independence”; trivial, e.g., in k-SUM



How to generate k orthogonal vectors to plant?

For each coordinate independently, pick #ones according to

Pr[#ones = 𝒎] =
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𝑘

𝒎

)
·
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)
and pick locations of 𝒎 ones uniformly at random from

( 𝑘
𝒎

)
options.
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𝒎
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Needs 𝑝 ⩽ 1/2

Example (𝒌 = 2):

Pr[00] = 1 − 2𝑝 Pr[01] = 𝑝 Pr[10] = 𝑝 Pr[11] = 0
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)
·
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)
and pick locations of 𝒎 ones uniformly at random from

( 𝑘
𝒎

)
options.

Claim: For any 𝒌 − 1 out of those 𝑘 vectors, for any coordinate, we have

Pr[#ones = ℓ] =
(
𝑘 − 1
ℓ

)
· 𝑝ℓ · (1 − 𝑝)𝑘−1−ℓ

Proof: Just do the math.

Needs 𝑝 ⩽ 1/2

Same as 𝑘 − 1 i.i.d. 𝑝-biased entries



How to generate k orthogonal vectors to plant?

conveniently

▶ Generate 𝒌 − 1 i.i.d. 𝑝-biased vectors 𝑢1, 𝑢2, . . . , 𝑢𝑘−1

▶ For each coordinate 𝑖 ∈ [𝑑]

▶ ℓ := 𝑢1 [𝑖] + 𝑢2 [𝑖] + · · · + 𝑢𝑘−1 [𝑖]

▶ Set 𝑢𝑘 [𝑖] :=

{
1 with probability 𝑝 ·

(
1 − ( −𝑝

1−𝑝)
𝑘−1−ℓ )

0 otherwise

#ones among first 𝑘 − 1 vectors
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▶ Set 𝑢𝑘 [𝑖] :=

{
1 with probability 𝑝 ·

(
1 − ( −𝑝

1−𝑝)
𝑘−1−ℓ )

0 otherwise

Claim: Same distribtution as the previous slide. Proof: Just do the math.

#ones among first 𝑘 − 1 vectors



Search-to-decision reduction

A decision algorithm gets an instance drawn either from the model distribution
or the planted distribution and outputs which one it was

A search algorithm gets an instance drawn from the planted distribution and
outputs indices of the planted vectors

Theorem: If there is a 𝑇 (𝑛)-time decision algorithm for k-OV with success
probability 1 − 𝑝(𝑛), then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for
k-OV with success probability 1 − 𝑘 log(𝑛)𝑝(𝑛)
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Key idea:

▶ Replace some vectors in the input instance with i.i.d. 𝑝-biased vectors

▶ If none of the planted vectors got replaced, the instance is distributed
according to the planted dsitribution

▶ If at least one planted vector got replaced, the instance is distributed
according to the model dsitribution
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Search-to-decision reduction

Key idea:

▶ Replace some vectors in the input instance with i.i.d. 𝑝-biased vectors

▶ If none of the planted vectors got replaced, the instance is distributed
according to the planted dsitribution

▶ If at least one planted vector got replaced, the instance is distributed
according to the model dsitribution

Thanks to (k-1)-wise independence

Reduction: Use the key idea to implement binary search



A different search-to-decision reduction

Theorem [Agrawal et al., CRYPTO’24]
For every 𝛿 > 0 there exists 𝜖 > 0 such that
if there is a 𝑇 (𝑛)-time decision algorithm for k-SUM with success probability 1− 𝜖,
then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for k-SUM with success
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Search algorithm:
▶ Create a counter for each vector, initially set to 0
▶ Repeat 𝑂(log 𝑛) times:
▶ Replace a random 1 − 𝑘

√︁
1/2 fraction of vectors with freshly sampled ones

▶ If the decision algorithm says planted, increment counters of non-replaced
▶ Return the 𝑘 vectors with highest counters
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Theorem: For every 𝛿 > 0 there exists 𝜖 > 0 such that [this work]
if there is a 𝑇 (𝑛)-time decision algorithm for k-OV with success probability 1 − 𝜖,
then there is an 𝑂(𝑇 (𝑛) log 𝑛)-time search algorithm for k-OV with success
probability 1 − 𝛿

Search algorithm:
▶ Create a counter for each vector, initially set to 0
▶ Repeat 𝑂(log 𝑛) times:
▶ Replace a random 1 − 𝑘

√︁
1/2 fraction of vectors with freshly sampled ones

▶ If the decision algorithm says planted, increment counters of non-replaced
▶ Return the 𝑘 vectors with highest counters

Proof of correctness: “Just” do the math (∼3 pages of math)
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