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» I know where the orthogonal vectors are;

» butyoudon't
...unless you spend n? time to find them;

» construction has some nice properties.



Why study planted problems?

Interesting theory

Fine-grained cryptography



Why study planted problems?

Interesting theory

Fine-grained cryptography

Cryptographers: "“Give us a problem for which we can
efficiently generate hard instances with known solutions,
like integer factorization, discrete logairthm, k-SUM, Zero-k-Clique.”
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Dream: “If you break my cipher in poly(n) time, then P=NP”

Reality: “If you break my cipher in poly(n) time,
then discrete logarithm can be solved in poly(n) time”

Peter Shor: “Give me a decently-sized quantum computer,
and I'll solve discrete logarithm in poly(n) time”

Fine-grained dream: “If you break my cipher in n®° time,
then Zero-100-Cligue Conjecture fails”

LaVigne-Lincoln-Vassilevska Williams: “If you break my cipher in n1-*° time,
then Average-Case Zero-100-Clique Conjecture fails”
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Orthogonal Vectors

Input: Two sets U,V € {0, 1}9 of n binary vectors of dimension d

Output: Do there existu € U,v € V such thatu L v?

L vie[d] ulil]=0vvl|i]=0

Worst-case complexity:

» Naive: 0(n?d)

» Polynomial method: 0 (n?>-1/1°9¢) ford = ¢ log n [Abboud-Williams-Yu 2014]
[Chan-Williams 2016]

» Under SETH, requires time n2-°M) for d = w (logn) [Williams 2005]
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k-Orthogonal Vectors

Input: k setsUq,U,,...,U, C {0, 1}9 of n binary vectors of dimension d

Output: Do there existuq € U4, U3 € Uy, ..., U, € Uy such that

Vieay U1li] =0V uali] =0V --- vV ugli] = 0?
Worst-case complexity:
» Naive: 0 (n“d)

» Polynomial method: 0 (n“~1/1°9¢) for d = clogn [Abboud-Williams-Yu 2014]
[Chan-Williams 2016]

» Under SETH, requires time n“=°() for d = w (logn) [Williams 2005]




How to plant orthogonal vectors

so that they are hard to find?



The Planted k-Orthogonal Vectors Problem

Model distribution: i.i.d. p-biased entries
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For each coordinate independently, pick #ones according to Needs p < 1/2
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Example (k = 2):

Pr{00] =1-2p Pri01] =p Pr[10] =p Pr(11] =0
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How to generate k orthogonal vectors to plant?

For each coordinate independently, pick #ones according to Needs p < 1/2

K
m

Pr[#ones = m] = ( ) : (p’" (1= p)km i (—=1)k=m -pk)

k

) options.

and pick locations of m ones uniformly at random from (

Claim: For any k — 1 out of those k vectors, for any coordinate, we have

k—1
Pr{#ones = ¢| = ( P ) pt-(1=p) 1t
A

Proof: Justdo the math. Same as k — 1i.i.d. p-biased entries




How to generate k orthogonal vectors to plant?

T

conveniently

» Generate k — 1i.i.d. p-biased vectors uq, Uy, ..., Uk_1

» For each coordi

> Ci=uqli]+ux[i]+-- +uk—q]|i]

» Setuglil| =4

nate i € |d]

KO otherwise

<

#ones among first k — 1 vectors

1 with probability p- (1 - (%)k—1—8)
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Claim: Same distribtution as the previous slide.



How to generate k orthogonal vectors to plant?

conveniently

» Generate k — 1i.i.d. p-biased vectors uq, Uy, ..., Uk_1

» For each coordinate i € |d]

#ones among first k — 1 vectors

> Li=uqlil+usli]l+-- -+ ugq]i] -

1 with probability p- (1 - (%)k—Ff)

» Setuglil| =4 .
KO otherwise

Claim: Same distribtution as the previous slide. Proof: Just do the math.



Search-to-decision reduction

A decision algorithm gets an instance drawn either from the model distribution
or the planted distribution and outputs which one it was

A search algorithm gets an instance drawn from the planted distribution and
outputs indices of the planted vectors

Theorem: If thereis a7 (n)-time decision algorithm for k-OV with success
probability 1 — p(n), then thereis an O(T(n) log n)-time search algorithm for
k-OV with success probability 1 — klog(n)p(n)
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Key idea:
» Replace some vectors in the input instance with i.i.d. p-biased vectors

» If none of the planted vectors got replaced, the instance is distributed
according to the planted dsitribution

» If at least one planted vector got replaced, the instance is distributed
according to the model dsitribution
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Search-to-decision reduction

Key idea:
» Replace some vectors in the input instance with i.i.d. p-biased vectors

» If none of the planted vectors got replaced, the instance is distributed
according to the planted dsitribution

» If at least one planted vector got replaced, the instance is distributed
according to the model dsitribution

Thanks to (k-1)-wise independence

Reduction: Use the key idea to implement binary search



A different search-to-decision reduction

Theorem [Agrawal et al., CRYPTO'24]
For every 6 > 0 there exists € > 0 such that

if there is a T(n)-time decision algorithm for k-SUM with success probability 1 —¢,

then thereisan O(T(n) log n)-time search algorithm for k-SUM with success
probability 1 — ¢
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» Return the k vectors with highest counters



A different search-to-decision reduction

Theorem: Forevery é > 0 there exists € > 0 such that [this work]
if there is a T(n)-time decision algorithm for k-OV with success probability 1 — €,

then thereis an O(T(n) log n)-time search algorithm for k-OV with success
probability 1 — o6

Search algorithm:
» Create a counter for each vector, initially set to 0
» Repeat O(logn) times:
» Replace arandom 1 — \k/m fraction of vectors with freshly sampled ones

» If the decision algorithm says planted, increment counters of non-replaced
» Return the k vectors with highest counters

Proof of correctness: “Just” do the math (~3 pages of math)
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THANK YOU!



