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dynamic power management with multiple states (dpm)
Machine with multiple sleep states:

Deeper sleep → higher wake-up cost

Input: sequence of idle periods

. . .
20s 5min 10s ??

Our task: choose sleep states during each idle period
• duration not known in advance!

raison d’être of learning-augmented algorithms
worst-case typical

classical algorithms
machine-learned predictions
learning-augmented algorithms

desiderata of learning-augmented algorithms
= algorithms with predictions

Consistency
close-to-optimal performance when predictions accurate

Robustness
worst-case guarantees, even when predictions adversarial

Smoothness
performance degrades slowly in the prediction error

our learning-augmented dpm algorithm
When i-th idle period starts, get prediction τi of its length `i

η =
n∑
i=1

α · |τi − `i|

total prediction error

power consumption of the active state

predicted idle period length
actual idle period length
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Classical online algorithm
Blindly follow predictions

[Purohit et al. ’18] + reduction
Our algorithm

Main ingredient:
• New smooth learning-augmented algorithm for ski rental
• optimal trade-off between consistency and error-dependence

Other ingredients:
• Reduction from DPM to ski-rental
• extension of [Lotker et al. ’12] to the learning-augmented setting

• Online learning for hyperparameter optimization

ski rental
During a ski season of unknown length, each day either

rent or buyper day cost α one-time cost β

Previous algorithms:
• deterministic 2-competitive [folklore]

• randomized e/(e− 1)-competitive [Karlin et al. ’90]
• learning-augmented [Purohit et al. ’18], [Angelopoulos et al. ’20]
• optimal consistency/robustness trade-off, no smoothness
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Our new ski rental algorithm
is (ρ, µ(ρ))-competitive, i.e.

cost(ALG) 6 ρ · cost(OPT) + µ(ρ) · η

where ρ ∈
[
1, e
e−1

]
, T2e−T = 1− 1

ρ

µ(ρ) = max

{
1−ρe−1e
ln 2 , ρ (1− T)e−T

}
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Case 1, τ < 0.5856
Case 2, τ ∈ [0.5856, 1]
Case 3, τ > 1


