
KNAPSACK AND SUBSET SUM WITH SMALL ITEMS
Adam Polak, Lars Rohwedder, Karol Węgrzycki

KNAPSACK AND SUBSET SUM WITH SMALL ITEMS
Adam Polak, Lars Rohwedder, Karol Węgrzycki

KNAPSACK PROBLEM

?
←−

?
←−

?
←−

?
←−

Given: • n items, i-th with value vi and size si ∈ Z+
• knapsack capacity t

Find: a subset of items with

• total size not exceeding t

• maximizing total value

PSEUDOPOLYNOMIAL TIME ALGORITHMS

O(nt) [Bellmann, 1957]

O(n+ st) [Kellerer and Pferschy, 2004]

O(n2−ε) impossible∗ when s, t ∈ Θ̃(n) [Cygan et al., 2017]
* unless min-plus convolution hypothesis fails [Künnemann et al., 2017]

Can we get O(n+ poly(s)) time?

OUR RESULT

O(n+ s3) time algorithm for Knapsack
Works for the more general variant with (binary encoded) multiplicities:

• multiplicities succinctly denote how many times each item appears in the instance;

• n denotes the (possibly much smaller) number of distinct items.

INGREDIENT #1: MAXIMAL PREFIX SOLUTIONS

1. Arrange items in descending order of efficiency vi/si

2. Take maximal prefix with total size ¶ t

Alternative definition: round down vertex solution to LP relaxation

Theorem: [Eisenbrand and Weismantel, 2018]
There is optimal solution that differs from maximal prefix solution by at most 2s items

INGREDIENT #2: CONVEX MAX-PLUS CONVOLUTION

Recall Bellman’s dynamic program for Knapsack:

DPA[i] = max total value of items from set A of total size ¶ i

Let A` = items of size exactly `

DPA1∪A2∪···∪As
︸ ︷︷ ︸

= DPA

= DPA1
⊕ (DPA2

⊕ (· · · ⊕ (DPAs−1
⊕ DPAs
︸ ︷︷ ︸

max-plus convolution, i.e., (u⊕v)[k] =maxi(u[i]+v[k−i])

) · · · ))

Two key observations: [Kellerer and Pferschy, 2004]

1. Each DPA` is concave

2. Max-plus convolution of a concave vector and an arbitrary vector is in linear time
︸ ︷︷ ︸

using SMAWK algorithm

Corollary: O(n+ st) time suffices to solve Knapsack for all capacities ¶ t

PUTTING PIECES TOGETHER

1. Compute maximal prefix solution P O(n)

2. Solve Knapsack for complement of P, for all capacities ¶ t ′ = 2s2 O(st ′) = O(s3)

3. Solve “Negative” Knapsack
︸ ︷︷ ︸

find minimum total value of items with total size ¾ t

for P, for all capacities ¶ t ′ = 2s2 O(st ′) = O(s3)

4. Combine 2 and 3 O(t ′) = O(s2)

OPEN PROBLEM

Close the gap between s2 and s3

SUBSET SUM PROBLEM

Given: • n integers s1, s2, . . . , sn

• target value t

Find: a subset of integers that sum up to exactly t

(Can be reduced to Knapsack by setting vi = si)

PSEUDOPOLYNOMIAL TIME ALGORITHMS

O(nt) [Bellmann, 1957]

Õ(n+ t) [Bringmann, 2017]

O(poly(n) t1−ε) impossible∗ when s ∈ Θ̃(t) [Cygan et al., 2012]
* unless SETH and Set Cover Conjecture fail [Abboud et al., 2019]

Big open problem: Can we get Õ(n+ s) time?

OUR RESULT

Õ(n+ s5/3) time algorithm for Subset Sum
Also works for succinctly encoded multisets (i.e., variant with multiplicities)

WARM-UP: QUADRATIC TIME ALGORITHM

1. Take our O(n+ s3) time Knapsack algorithm.

2. Change the O(n+st) time Knapsack algorithm to a Õ(n+ t) time Subset Sum algorithm.

3. Get a Õ(n+ s2) time Subset Sum algorithm.

INGREDIENT #3: ADDITIVE COMBINATORICS

Let λ ∈ Θ̃(µsΣ/n2), where µ=maximum multiplicity
︸ ︷︷ ︸

even without succinct binary encoding, e.g., µ= 1 only when all items are distinct

, and Σ= s1+ s2+ · · ·+ sn

Theorem: [Bringmann and Wellnitz, 2021]
Subset Sum can be solved in Õ(n) time for t ∈ (λ,Σ−λ)

Corollary: Subset Sum can be solved in Õ(n+ s3/2µ1/2) time

Proof of Corollary: use Theorem, falling back to Õ(t) algorithm if t ¶ λ (w.l.o.g. t ¶ Σ/2)

PUTTING PIECES TOGETHER

1. Compute maximal prefix solution P O(n)

2. Solve Subset Sum for complement of P, for all targets ¶ t ′ = 2s2, as follows

(a) Group identical items into bags of exactly s1/3 items; leave O(s1/3) spares of each
(b) Create two (sub-)instances of Subset Sum: bags instance and spares instance
(c) In bags instance

• divide everything by s1/3;
• solve for all targets ¶ t ′′ = t ′/s1/3 = 2s5/3 Õ(t ′′) = Õ(s5/3)

(d) In spares instance
•µ¶ O(s1/3);
• solve using additive combinatorics Õ(s3/2µ1/2) = Õ(s5/3)

3. Solve Subset Sum for P, for all targets ¶ t ′ = 2s2, as above Õ(s5/3)

4. Combine 2 and 3
︸ ︷︷ ︸

(not as simple as for Knapsack)

O(s5/3)

OPEN PROBLEM

Close the gap between s and s5/3

Max item size
s = max

i
si


