KNAPSACK AND SUBSET SUM WITH SMALL ITEMS

Adam Polak, Lars Rohwedder, Karol Węgrzycki

KNAPSACK PROBLEM

- **Given:** *n* items, *i*-th with value v_i and size $s_i \in \mathbb{Z}_+$ • knapsack capacity *t*
 - **Find:** a subset of items with
 - total size not exceeding *t*
 - maximizing total value

SUBSET SUM PROBLEM

- **Given:** *n* integers s_1, s_2, \ldots, s_n • target value *t*
- a subset of integers that sum up to exactly t Find:
- (Can be reduced to Knapsack by setting $v_i = s_i$)

PSEUDOPOLYNOMIAL TIME ALGORITHMS

O(nt)	

O(n+st)

[Bellmann, 1957] [Kellerer and Pferschy, 2004] **PSEUDOPOLYNOMIAL TIME ALGORITHMS**

O(nt) $\tilde{O}(n+t)$ Max item size $s = \max s_i$

 $O(n^{2-\varepsilon})$ impossible^{*} when $s, t \in \tilde{\Theta}(n)$ * unless min-plus convolution hypothesis fails

Can we get O(n + poly(s)) time?

OUR RESULT

$O(n + s^3)$ time algorithm for Knapsack

Works for the more general variant with (binary encoded) multiplicities: • multiplicities succinctly denote how many times each item appears in the instance; • *n* denotes the (possibly much smaller) number of distinct items.

INGREDIENT #1: MAXIMAL PREFIX SOLUTIONS

1. Arrange items in descending order of efficiency v_i/s_i 2. Take maximal prefix with total size $\leq t$

Alternative definition: round down vertex solution to LP relaxation

[Cygan et al., 2017] [Künnemann et al., 2017]

 $O(\text{poly}(n) t^{1-\varepsilon}) \text{ impossible}^* \text{ when } s \in \tilde{\Theta}(t)$ * unless SETH and Set Cover Conjecture fail

Big open problem: Can we get $\tilde{O}(n+s)$ time?

OUR RESULT

[Cygan et al., 2012] [Abboud et al., 2019]

[Bellmann, 1957]

[Bringmann, 2017]

$\tilde{O}(n + s^{5/3})$ time algorithm for Subset Sum

Also works for succinctly encoded multisets (i.e., variant with multiplicities)

WARM-UP: QUADRATIC TIME ALGORITHM

1. Take our $O(n + s^3)$ time Knapsack algorithm. 2. Change the O(n+st) time Knapsack algorithm to a $\tilde{O}(n+t)$ time Subset Sum algorithm. 3. Get a $\tilde{O}(n + s^2)$ time Subset Sum algorithm.

INGREDIENT #3: ADDITIVE COMBINATORICS

Theorem:

There is optimal solution that differs from maximal prefix solution by at most 2s items

INGREDIENT #2: CONVEX MAX-PLUS CONVOLUTION

Recall Bellman's dynamic program for Knapsack:

 $DP_A[i] = \max$ total value of items from set A of total size $\leq i$

Let A_{ℓ} = items of size exactly ℓ

$$\underbrace{DP_{A_1 \cup A_2 \cup \dots \cup A_s}}_{= DP_A} = DP_{A_1} \oplus (DP_{A_2} \oplus (\dots \oplus (\underline{DP_{A_{s-1}} \oplus DP_{A_s}}) \dots))$$

max-plus convolution, i.e., $(u \oplus v)[k] = \max_i (u[i] + v[k-i])$

Two key observations:

[Kellerer and Pferschy, 2004]

1. Each $DP_{A_{\ell}}$ is concave

2. Max-plus convolution of a concave vector and an arbitrary vector is in linear time using SMAWK algorithm

Corollary: O(n + st) time suffices to solve Knapsack for all capacities $\leq t$

PUTTING PIECES TOGETHER

[Eisenbrand and Weismantel, 2018] Let $\lambda \in \tilde{\Theta}(\mu s \Sigma/n^2)$, where $\mu = \text{maximum multiplicity, and } \Sigma = s_1 + s_2 + \cdots + s_n$

even without succinct binary encoding, e.g., $\mu = 1$ only when all items are distinct

[Bringmann and Wellnitz, 2021] Theorem: Subset Sum can be solved in $\tilde{O}(n)$ time for $t \in (\lambda, \Sigma - \lambda)$

Corollary: Subset Sum can be solved in $\tilde{O}(n + s^{3/2}\mu^{1/2})$ time

Proof of Corollary: use Theorem, falling back to $\tilde{O}(t)$ algorithm if $t \leq \lambda$ (w.l.o.g. $t \leq \Sigma/2$)

PUTTING PIECES TOGETHER

1. Compute maximal prefix solution *P* O(n)2. Solve Subset Sum for complement of *P*, for all targets $\leq t' = 2s^2$, as follows (a) Group identical items into *bags* of exactly $s^{1/3}$ items; leave $O(s^{1/3})$ spares of each (b) Create two (sub-)instances of Subset Sum: bags instance and spares instance (c) In bags instance • divide everything by $s^{1/3}$; $\tilde{O}(t'') = \tilde{O}(s^{5/3})$ • solve for all targets $\leq t'' = t'/s^{1/3} = 2s^{5/3}$ (d) In spares instance • $\mu \leq O(s^{1/3});$ $\tilde{O}(s^{3/2}\mu^{1/2}) = \tilde{O}(s^{5/3})$ • solve using additive combinatorics 3. Solve Subset Sum for *P*, for all targets $\leq t' = 2s^2$, as above $\tilde{O}(s^{5/3})$

 $O(s^{5/3})$

1. Compute maximal prefix solution *P*

2. Solve Knapsack for complement of *P*, for all capacities $\leq t' = 2s^2$ 3. Solve "Negative" Knapsack for *P*, for all capacities $\leq t' = 2s^2$

find minimum total value of items with total size $\geq t$

4. Combine 2 and 3

 $O(t') = O(s^2)$

 $O(st') = O(s^3)$

 $O(st') = O(s^3)$

O(n)

OPEN PROBLEM

Close the gap between s^2 and s^3

4. Combine 2 and 3

(not as simple as for Knapsack)

Close the gap between *s* and $s^{5/3}$

