UNIVERSITY **OF TWENTE**. SDU University of Southern Denmark

PAGING WITH SUCCINCT PREDICTIONS Marek Eliáš Lene M. Favrholdt Antonios Antoniadis Joan Boyar Adam Polak Ruben Hoeksma Kim S. Larsen Bertrand Simon

The online paging problem

Which page to evict from cache to make room for a new page?

Image credit: Liu et al. An Imitation Learning Approach for Cache Replacement [ICML'20]

Goal: minimize number of cache misses.

requested page no longer in cache and has to be reloaded

Best classic algorithm: randomized $O(\log k)$ -competitive [Fiat et al., '91]

 $\mathbb{E}[ALG] \leq O(\log k) \cdot OPT + const$

cost of a best in hindsight choice of evictions

Matching lower bound: any algorithm is $\Omega(\log k)$ -competitive.

Paging with predictions

You can bypass the $\log k$ barrier...

... if you have access to sufficiently accurate *predictions* about:

predicted information	bits per request	
time of reoccurrence of this page	$\log T$	[Lykouris, Vassi
next action of OPT	log k	[Antoniadi
all requests until reoccurrence	log n	[Jiang
relative order of reoccurrences	log k	[Bansa]
if OPT evicts this page before reuse	1	
if this page appears in next phase	1	

Lower bound: **o(1) bits** per request **do not suffice** to go below log k, even with perfectly accurate prediction of any kind. [Mikkelsen, ICALP'16]

A B D Miss k = cache size

ilvitskii, ICML'18] is et al., ICML'20] et al., ICALP'20] al et al., SODA'22]

> this work this work

DISCARD-predictions setup

Would OPT evict this page before it is requested again?

Each page request r_i comes with prediction p_i :

if OPT **keeps** r_i in cache until it is requested again, if OPT **evicts** r_i before it is requested again. $p_i = -$

There are available models trained to output such predictions, e.g.,: • Hawkeye SVM [Jain, Lin, ISCA'16] • *Glider* deep neural network with LSTM [Shi et al., MICRO'19]

Deterministic algorithm w/ DISCARD predictions

On each cache miss:

- evict a page that is predicted as safe to evict $(p_i = 1)$, if it exists;
- otherwise, flush the cache, i.e., evict all pages (with $p_i = 0$).

ALG $\leq 1 \cdot \text{OPT} + (k-1) \cdot \eta_0 + 1 \cdot \eta_1 + \text{const}$

Lower bound: coefficients 1, (k-1), 1 cannot be improved (using a deterministic algorithm)

Randomized algorithm w/ DISCARD predictions

Immediately evict every page with prediction 1. Perform a randomized marking strategy on pages with predictions 0.

intricate; see paper for details

 $\mathbb{E}[ALG] \leq 1 \cdot OPT + 2H_k \cdot \eta_0 + 1 \cdot \eta_1 + const$ $H_k = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} = O(\log k)$

Lower bound: coefficients 1, $2H_k$, 1 are optimal up to constant factors.

PHASE-predictions setup

Is this page going to be requested in next phase?

Each page request r_i comes with prediction p_i :

 $p_i = \begin{cases} \mathbf{0}, & \text{if } r_i \text{ is requested in next phase,} \\ \mathbf{1}, & \text{if } r_i \text{ is not requested in next phase.} \end{cases}$

Algorithm with PHASE predictions

foreach request r_i **do if** r_i not in cache **then** if all pages in cache are marked then **unmark** all pages else mark r_i

Lower bounds:

How do we measure prediction error?

- η_0 = number of zeros that should be ones
- η_1 = number of ones that should be zeros

maximal subsequence of k distinct pages

- **if** there is an unmarked page with prediction 1 **then** evict a random unmarked page with prediction 1
 - evict a random unmarked page with prediction 0

 $\mathbb{E}[ALG] \leq 2 \cdot OPT + H_k \cdot \eta_0 + 1 \cdot \eta_1 + const$ $\mathbb{E}[ALG] \leq O(\log(\eta_1/OPT)) \cdot OPT + H_k \cdot \eta_0 + \text{const}$

• coefficient H_k is optimal up to an additive constant; asymptotic dependence on η_1 /OPT cannot be improved.